메뉴 건너뛰기




Volumn 45, Issue 7, 2012, Pages 2633-2644

Clustering with proximity knowledge and relational knowledge

Author keywords

Fuzzy clustering; Knowledge representation; Proximity; Relational clustering; Software requirements

Indexed keywords

FUZZY C-MEANS; FUZZY FRAMEWORKS; PROXIMITY; REAL WORLD EXPERIMENT; RELATIONAL CLUSTERING; RELATIONAL DATA; SOFTWARE REQUIREMENTS;

EID: 84857993256     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.12.019     Document Type: Article
Times cited : (9)

References (39)
  • 1
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • J. Kogan, C. Nicholas, M. Teboulle, Spring Berlin, Heidelberg
    • P. Berkhin A survey of clustering data mining techniques J. Kogan, C. Nicholas, M. Teboulle, Grouping Multidimensional Data 2006 Spring Berlin, Heidelberg 25 71
    • (2006) Grouping Multidimensional Data , pp. 25-71
    • Berkhin, P.1
  • 2
    • 0024475955 scopus 로고
    • Relational duals of the c-means clustering algorithms
    • R.J. Hathaway, J.W. Davenport, and J.C. Bezdek Relational duals of the c-means clustering algorithms Pattern Recognition 22 2 1989 205 212
    • (1989) Pattern Recognition , vol.22 , Issue.2 , pp. 205-212
    • Hathaway, R.J.1    Davenport, J.W.2    Bezdek, J.C.3
  • 3
    • 0028667335 scopus 로고
    • Nerf c-means: Non-Euclidean relational fuzzy clustering
    • DOI 10.1016/0031-3203(94)90119-8
    • R.J. Hathaway, and J.C. Bezdek Nerf c-means: Non-Euclidean relational fuzzy clustering Pattern Recognition 27 1994 429 437 (Pubitemid 124017421)
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 5
    • 67649090202 scopus 로고    scopus 로고
    • RECM: Relational evidential c-means algorithm
    • M.H. Masson, and T. Denoeux RECM: relational evidential c-means algorithm Pattern Recognition Letters 30 2009 1015 1026
    • (2009) Pattern Recognition Letters , vol.30 , pp. 1015-1026
    • Masson, M.H.1    Denoeux, T.2
  • 9
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg A tutorial on spectral clustering Statistics and Computing 17 4 2007 395 416
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 10
    • 79953212248 scopus 로고    scopus 로고
    • Exact algorithms for cluster editing: Evaluation and experiments
    • S. Bocker, S. Briesemeister, and G.W. Klau Exact algorithms for cluster editing: evaluation and experiments Algorithmica 60 2 2009 316 334
    • (2009) Algorithmica , vol.60 , Issue.2 , pp. 316-334
    • Bocker, S.1    Briesemeister, S.2    Klau, G.W.3
  • 11
    • 33746821487 scopus 로고    scopus 로고
    • On relational possibilistic clustering
    • DOI 10.1016/j.patcog.2006.04.008, PII S0031320306001634
    • M. De Caceres, F. Oliva, and X. Font On relational possibilistic clustering Pattern Recognition 39 11 2006 2010 2024 (Pubitemid 44175445)
    • (2006) Pattern Recognition , vol.39 , Issue.11 , pp. 2010-2024
    • De Caceres, M.1    Oliva, F.2    Font, X.3
  • 12
    • 75749127352 scopus 로고    scopus 로고
    • Fuzzy clustering with weighted medoids for relational data
    • J.P. Mei, and L. Chen Fuzzy clustering with weighted medoids for relational data Pattern Recognition 43 5 2010 1964 1974
    • (2010) Pattern Recognition , vol.43 , Issue.5 , pp. 1964-1974
    • Mei, J.P.1    Chen, L.2
  • 13
    • 0036132613 scopus 로고    scopus 로고
    • Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm
    • DOI 10.1016/S0167-8655(01)00115-5, PII S0167865501001155
    • R.J. Hathaway, and J.C. Bezdek Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm Pattern Recognition Letters vol. 23 1-3 2002 151 160 (Pubitemid 33119508)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.1-3 , pp. 151-160
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 14
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • DOI 10.1016/j.patrec.2004.03.016, PII S016786550400090X
    • D.S. Guru, B.B. Kiranagi, and P. Nagabhushan Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns Pattern Recognition Letters 25 10 2004 1203 1213 (Pubitemid 38763662)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.10 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3
  • 15
    • 34250867359 scopus 로고    scopus 로고
    • Clustering and aggregation of relational data with applications to image database categorization
    • DOI 10.1016/j.patcog.2007.02.019, PII S0031320307001069
    • H. Frigul, C. Hwang, and F.C.H. Rhee Clustering and aggregation of relational data with applications to image database categorization Pattern Recognition 40 11 2007 3053 3068 (Pubitemid 46990437)
    • (2007) Pattern Recognition , vol.40 , Issue.11 , pp. 3053-3068
    • Frigui, H.1    Hwang, C.2    Chung-Hoon Rhee, F.3
  • 16
    • 0037117682 scopus 로고    scopus 로고
    • Electre-like clustering from a pairwise fuzzy proximity index
    • DOI 10.1016/S0377-2217(01)00249-1, PII S0377221701002491
    • R. Bisdorff Electre-like clustering from a pairwise fuzzy proximity index European Journal of Operational Research 138 2002 320 331 (Pubitemid 34065101)
    • (2002) European Journal of Operational Research , vol.138 , Issue.2 , pp. 320-331
    • Bisdorff, R.1
  • 18
    • 45349112347 scopus 로고
    • Proximity relations in the fuzzy relational database model
    • S. Shenoi, and A. Melton Proximity relations in the fuzzy relational database model Fuzzy Sets and Systems 31 1989 285 296
    • (1989) Fuzzy Sets and Systems , vol.31 , pp. 285-296
    • Shenoi, S.1    Melton, A.2
  • 20
    • 37249013395 scopus 로고    scopus 로고
    • Semantic web content analysis: A study in proximity-based collaborative clustering
    • DOI 10.1109/TFUZZ.2006.889970, Special Issue on Aggregation Operators
    • V. Loia, W. Pedrycz, and S. Senatore Semantic web content analysis: a study in proximity-based collaborative clustering IEEE Transactions on Fuzzy Systems 15 6 2007 1294 1312 (Pubitemid 350268656)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.6 , pp. 1294-1312
    • Loia, V.1    Pedrycz, W.2    Senatore, S.3
  • 21
    • 44649129064 scopus 로고    scopus 로고
    • Isotree: Tree clustering via metric embedding
    • B. Xiao, A. Torsello, and E.R. Hancock Isotree: tree clustering via metric embedding Neurocomputing 71 2008 2029 2036
    • (2008) Neurocomputing , vol.71 , pp. 2029-2036
    • Xiao, B.1    Torsello, A.2    Hancock, E.R.3
  • 23
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance-based kernel functions for structural pattern classification
    • DOI 10.1016/j.patcog.2006.04.012, PII S0031320306001609
    • M. Neuhaus, and H. Bunke Edit distance-based kernel functions for structural pattern classification Pattern Recognition 39 2006 1852 1863 (Pubitemid 43947095)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 24
    • 64849091214 scopus 로고    scopus 로고
    • Approximate graph edit distance computation by means of bipartite graph matching
    • K. Riesen, and H. Bunke Approximate graph edit distance computation by means of bipartite graph matching Image and Vision Computing 27 2009 950 959
    • (2009) Image and Vision Computing , vol.27 , pp. 950-959
    • Riesen, K.1    Bunke, H.2
  • 26
    • 84858000570 scopus 로고    scopus 로고
    • Pattern analysis with graphs: Parallel work at Bern and York
    • 10.1016/j.patrec.2011.08.012
    • E.R. Hancock, and R.C. Wilson Pattern analysis with graphs: parallel work at Bern and York Pattern Recogition Letters 2011 10.1016/j.patrec.2011.08.012
    • (2011) Pattern Recogition Letters
    • Hancock, E.R.1    Wilson, R.C.2
  • 28
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • M. Filippone, F. Camastra, F. Masulli, and S. Rovetta A survey of kernel and spectral methods for clustering Pattern Recognition 41 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 29
    • 77958005275 scopus 로고    scopus 로고
    • A spectral approach to clustering numerical vectors as nodes in a network
    • M. Shiga, I. Takigawa, H. Mamitsuka, A spectral approach to clustering numerical vectors as nodes in a network, Pattern Recognition 44 (2) (2011) 236251.
    • (2011) Pattern Recognition , vol.44 , Issue.2 , pp. 236251
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 30
    • 59549100093 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • M. Girolami Mercer kernel-based clustering in feature space IEEE Transactions on Neural Networks 10 5 1999 1000 1017
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1000-1017
    • Girolami, M.1
  • 31
    • 72149122625 scopus 로고    scopus 로고
    • Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
    • D. Graves, and W. Pedrycz Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study Fuzzy Sets and Systems 161 2010 522 543
    • (2010) Fuzzy Sets and Systems , vol.161 , pp. 522-543
    • Graves, D.1    Pedrycz, W.2
  • 38
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science [Online]
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2007 [Online] Available: 〈http://archive.ics.uci.edu/beta/〉.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.