-
1
-
-
85027938731
-
Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light
-
Liu, J.; Zhang, H. C.; Tang, D.; Zhang, X.; Yan, L. K.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light. Chemcatchem2014, 6, 2634–2641.
-
(2014)
Chemcatchem
, vol.6
, pp. 2634-2641
-
-
Liu, J.1
Zhang, H.C.2
Tang, D.3
Zhang, X.4
Yan, L.K.5
Han, Y.Z.6
Huang, H.7
Liu, Y.8
Kang, Z.H.9
-
2
-
-
84904532981
-
Bi2WO6 quantum dot–intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance
-
6 quantum dot–intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.
-
(2014)
Nano Res.
, vol.7
, pp. 1497-1506
-
-
Sun, S.M.1
Wang, W.Z.2
Jiang, D.3
Zhang, L.4
Li, X.M.5
Zheng, Y.L.6
An, Q.7
-
3
-
-
84890031550
-
WS2 nanoflakes from nanotubes for electrocatalysis
-
Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.
-
(2013)
Nano Res.
, vol.6
, pp. 921-928
-
-
Choi, C.L.1
Feng, J.2
Li, Y.G.3
Wu, J.4
Zak, A.5
Tenne, R.6
Dai, H.J.7
-
4
-
-
84875656830
-
J. p–n heterojunction photoelectrodes composed of Cu2O–loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities
-
2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1211-1220
-
-
Wang, M.Y.1
Sun, L.2
Lin, Z.Q.3
Cai, J.H.4
Xie, K.P.5
Lin, C.6
-
5
-
-
84860372840
-
Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties
-
Wheeler, D. A.; Wang, G. M.; Ling, Y. C.; Li, Y.; Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6682-6702
-
-
Wheeler, D.A.1
Wang, G.M.2
Ling, Y.C.3
Li, Y.4
Zhang, J.Z.5
-
6
-
-
80755159106
-
Branched TiO2 nanorods for photoelectrochemical hydrogen production
-
2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.
-
(2011)
Nano Lett.
, vol.11
, pp. 4978-4984
-
-
Cho, I.S.1
Chen, Z.B.2
Forman, A.J.3
Kim, D.R.4
Rao, P.M.5
Jaramillo, T.F.6
Zheng, X.L.7
-
7
-
-
84855758556
-
Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting
-
Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407–413.
-
(2012)
Nano Lett.
, vol.12
, pp. 407-413
-
-
Qiu, Y.C.1
Yan, K.Y.2
Deng, H.3
Yang, S.H.4
-
8
-
-
84907989649
-
High–performance p–Cu2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting
-
2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758–3768.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3758-3768
-
-
Hou, J.G.1
Yang, C.2
Cheng, H.J.3
Jiao, S.Q.4
Takeda, O.5
Zhu, H.M.6
-
9
-
-
84907603708
-
Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self–powered biosensing application
-
Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self–powered biosensing application. Biosens. Bioelectron. 2015, 64, 499–504.
-
(2015)
Biosens. Bioelectron.
, vol.64
, pp. 499-504
-
-
Kang, Z.1
Gu, Y.S.2
Yan, X.Q.3
Bai, Z.M.4
Liu, Y.C.5
Liu, S.6
Zhang, X.H.7
Zhang, Z.8
Zhang, X.J.9
Zhang, Y.10
-
10
-
-
84941736886
-
Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating
-
4 nanosheets coating. Nano Energy2014, 14, 392–400.
-
(2014)
Nano Energy
, vol.14
, pp. 392-400
-
-
Bai, Z.M.1
Yan, X.Q.2
Kang, Z.3
Hu, Y.P.4
Zhang, X.H.5
Zhang, Y.6
-
11
-
-
84938232516
-
Electronic structure engineering of Cu2O film/ZnO nanorods array all–oxide p–n heterostructure for enhanced photoelectrochemical property and self–powered biosensing application
-
2O film/ZnO nanorods array all–oxide p–n heterostructure for enhanced photoelectrochemical property and self–powered biosensing application. Sci. Rep. 2015, 5, 7882.
-
(2015)
Sci. Rep.
, vol.5
, pp. 7882
-
-
Kang, Z.1
Yan, X.Q.2
Wang, Y.F.3
Bai, Z.M.4
Liu, Y.C.5
Zhang, Z.6
Lin, P.7
Zhang, X.H.8
Yuan, H.G.9
Zhang, X.J.10
-
12
-
-
84874587010
-
Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light
-
2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale2013, 5, 2274–2278.
-
(2013)
Nanoscale
, vol.5
, pp. 2274-2278
-
-
Zhang, X.1
Wang, F.2
Huang, H.3
Li, H.T.4
Han, X.5
Liu, Y.6
Kang, Z.H.7
-
13
-
-
84897025842
-
Activating ZnO nanorod photoanodes in visible light by Cu ion implantation
-
Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.
-
(2014)
Nano Res.
, vol.7
, pp. 353-364
-
-
Wang, M.1
Ren, F.2
Cai, G.X.3
Liu, Y.C.4
Shen, S.H.5
Guo, L.J.6
-
14
-
-
0038646291
-
High electron mobility of epitaxial ZnO thin films on c–plane sapphire grown by multistep pulsed–laser deposition
-
Kaidashev, E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c–plane sapphire grown by multistep pulsed–laser deposition. Appl. Phys. Lett. 2003, 82, 3901–3903.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 3901-3903
-
-
Kaidashev, E.M.1
Lorenz, M.2
Wenckstern, H.3
Rahm, A.4
Semmelhack, H.C.5
Han, K.H.6
Benndorf, G.7
Bundesmann, C.8
Hochmuth, H.9
Grundmann, M.10
-
15
-
-
84865609728
-
Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices
-
Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.
-
(2012)
Adv. Mater.
, vol.24
, pp. 4647-4655
-
-
Zhang, Y.1
Yan, X.Q.2
Yang, Y.3
Huang, Y.H.4
Liao, Q.L.5
Qi, J.J.6
-
16
-
-
0038308681
-
Bicrystalline zinc oxide nanowires
-
Dai, Y.; Zhang, Y; Bai, Y. Q.; Wang, Z. L. Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 2003, 375, 96–101.
-
(2003)
Chem. Phys. Lett.
, vol.375
, pp. 96-101
-
-
Dai, Y.Z.Y.1
Bai, Y.Q.2
Wang, Z.L.3
-
17
-
-
0038177986
-
The octa–twin tetraleg ZnO nanostructures
-
Dai, Y.; Zhang, Y.; Wang, Z. L.; The octa–twin tetraleg ZnO nanostructures. Solid State Commun. 2003, 126, 629–633.
-
(2003)
Solid State Commun.
, vol.126
, pp. 629-633
-
-
Dai, Y.1
Zhang, Y.2
Wang, Z.L.3
-
18
-
-
84906810083
-
Piezotronic interface engineering on ZnO/Au–based Schottky junction for enhanced photoresponse of a flexible self–powered UV detector
-
Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au–based Schottky junction for enhanced photoresponse of a flexible self–powered UV detector. ACS Appl. Mater. Interfaces. 2014, 6, 14116–14122.
-
(2014)
ACS Appl. Mater. Interfaces.
, vol.6
, pp. 14116-14122
-
-
Lu, S.N.1
Qi, J.J.2
Liu, S.3
Zhang, Z.4
Wang, Z.Z.5
Lin, P.6
Liao, Q.L.7
Liang, Q.J.8
Zhang, Y.9
-
19
-
-
84881567290
-
Au nanostructure–decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting
-
Pu, Y. C.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Au nanostructure–decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.
-
(2013)
Nano Lett.
, vol.13
, pp. 3817-3823
-
-
Pu, Y.C.1
Qi, J.J.2
Liu, S.3
Zhang, Z.4
Wang, Z.Z.5
Lin, P.6
Liao, Q.L.7
Liang, Q.J.8
Zhang, Y.9
-
20
-
-
84872107389
-
Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting
-
2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.
-
(2013)
Nano Lett.
, vol.13
, pp. 14-20
-
-
Zhang, Z.H.1
Zhang, L.B.2
Hedhili, M.N.3
Zhang, H.N.4
Wang, P.5
-
21
-
-
84910116157
-
On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing
-
Azevedo, J.; Steier, L.; Dias, P.; Stefik, M.; Sousa, C. T.; Araujo, J. P.; Mendes, A.; Graetzel, M.; Tilley, S. D. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci. 2014, 7, 4044–4052.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 4044-4052
-
-
Azevedo, J.1
Steier, L.2
Dias, P.3
Stefik, M.4
Sousa, C.T.5
Araujo, J.P.6
Mendes, A.7
Graetzel, M.8
Tilley, S.D.9
-
22
-
-
84896949331
-
2 photonic crystals for synergistically enhanced photoelectrochemical water splitting
-
Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow–photon–effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409–1419.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1409-1419
-
-
Zhang, X.1
Liu, Y.2
Lee, S.T.3
Yang, S.H.4
Kang, Z.H.5
-
24
-
-
84865604616
-
Plasmon inducing effects for enhanced photoelectrochemical water splitting: X–ray absorption approach to electronic structures
-
Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Hou, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X–ray absorption approach to electronic structures. ACS Nano2012, 6, 7362–7372.
-
(2012)
ACS Nano
, vol.6
, pp. 7362-7372
-
-
Chen, H.M.1
Chen, C.K.2
Chen, C.J.3
Cheng, L.C.4
Wu, P.C.5
Cheng, B.H.6
Hou, Y.Z.7
Tseng, M.L.8
Hsu, Y.Y.9
Chan, T.S.10
-
25
-
-
84907846439
-
In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting
-
Wu, M.; Chen, W. J.; Shen, Y. H.; Huang, F. Z.; Li, C. H.; Li, S. K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces2014, 6, 15052–15060.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 15052-15060
-
-
Wu, M.1
Chen, W.J.2
Shen, Y.H.3
Huang, F.Z.4
Li, C.H.5
Li, S.K.6
-
26
-
-
84897012440
-
3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high–performance photoelectrochemical water splitting
-
Zhang, X., Y.; Liu, Y.; Kang, Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high–performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces2014, 6, 4480–4489.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 4480-4489
-
-
Zhang, X.Y.1
Liu, Y.2
Kang, Z.3
-
27
-
-
82055161674
-
Plasmonic–metal nanostructures for efficient conversion of solar to chemical energy
-
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic–metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.
-
(2011)
Nat. Mater.
, vol.10
, pp. 911-921
-
-
Linic, S.1
Christopher, P.2
Ingram, D.B.3
-
28
-
-
84875869408
-
A review of surface plasmon resonance–enhanced photocatalysis
-
Hou, W.; Cronin, S. B. A review of surface plasmon resonance–enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 1612-1619
-
-
Hou, W.1
Cronin, S.B.2
-
29
-
-
84883785757
-
ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance
-
Guo, P. H.; Jiang, J. G.; Shen, S. H.; Guo, L. J. ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance. Inter. J. Hydrogen Energ. 2013, 38, 13097–13103.
-
(2013)
Inter. J. Hydrogen Energ.
, vol.38
, pp. 13097-13103
-
-
Guo, P.H.1
Jiang, J.G.2
Shen, S.H.3
Guo, L.J.4
-
30
-
-
84883767178
-
J. Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion–exchange approach and photoelectrochemical performances
-
Jiang, J. G.; Wang, M.; Ma, L. J.; Chen, Q. Y.; Guo, L. J. Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion–exchange approach and photoelectrochemical performances. Inter. J. Hydrogen Energ. 2013, 38, 13077–13083.
-
(2013)
Inter. J. Hydrogen Energ.
, vol.38
, pp. 13077-13083
-
-
Jiang, J.G.1
Wang, M.2
Ma, L.J.3
Chen, Q.Y.4
Guo, L.5
-
31
-
-
84897413300
-
ZnS shielded ZnO nanowire photoanodes for efficient water splitting
-
Kushwaha, A.; Aslam, M. ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochimica Acta2014, 130, 222–231.
-
(2014)
Electrochimica Acta
, vol.130
, pp. 222-231
-
-
Kushwaha, A.1
Aslam, M.2
-
32
-
-
84907317070
-
Enhanced photoresponse of ZnO nanorods–based self–powered photodetector by piezotronic interface engineering
-
Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods–based self–powered photodetector by piezotronic interface engineering. Nano Energ. 2014, 9, 237–244.
-
(2014)
Nano Energ.
, vol.9
, pp. 237-244
-
-
Zhang, Z.1
Liao, Q.L.2
Yu, Y.H.3
Wang, X.D.4
Zhang, Y.5
-
33
-
-
84898657987
-
Design of efficient dye–sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes
-
Chen, X.; Bai, Z. M.; Yan, X. Q.; Yuan, H. G.; Zhang, G. J.; Lin, P.; Zhang, Z.; Liu, Y. C.; Zhang, Y. Design of efficient dye–sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes. Nanoscale2014, 6, 4691–4697.
-
(2014)
Nanoscale
, vol.6
, pp. 4691-4697
-
-
Chen, X.1
Bai, Z.M.2
Yan, X.Q.3
Yuan, H.G.4
Zhang, G.J.5
Lin, P.6
Zhang, Z.7
Liu, Y.C.8
Zhang, Y.9
-
34
-
-
0002911883
-
Seed–mediated successive growth of gold particles accomplished by UV irradiation: A photochemical approach for size–controlled synthesis
-
Mallick, K.; Wang, Z. L.; Pal, T. Seed–mediated successive growth of gold particles accomplished by UV irradiation: A photochemical approach for size–controlled synthesis. J. Photoch. Photobio. A2001, 140, 75–80.
-
(2001)
J. Photoch. Photobio. A
, vol.140
, pp. 75-80
-
-
Mallick, K.1
Wang, Z.L.2
Pal, T.3
-
36
-
-
84877738485
-
A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation
-
2 on hematite for photoelectrochemical water oxidation. Nanoscale2013, 5, 4129–4133.
-
(2013)
Nanoscale
, vol.5
, pp. 4129-4133
-
-
Wang, G.M.1
Ling, Y.C.2
Lu, X.H.3
Zhai, T.4
Qian, F.5
Tong, Y.X.6
Li, Y.7
-
37
-
-
34548192076
-
Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications
-
Schrier, J.; Demchenko, D. O.; Wang, L. W. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007, 7, 2377–2282.
-
(2007)
Nano Lett.
, vol.7
, pp. 2282-2377
-
-
Schrier, J.1
Demchenko, D.O.2
Wang, L.W.3
-
38
-
-
84863028116
-
Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: Morphology evolution and its effect on dye–sensitized solar cell
-
Liu, L. Z.; Chen, Y. Q.; Guo, T. B.; Zhu, Y. Q.; Su, Y.; Jia, C.; Wei, M. Q.; Cheng, Y. F. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: Morphology evolution and its effect on dye–sensitized solar cell. ACS Appl. Mater. Interfaces2012, 4, 17–23.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 17-23
-
-
Liu, L.Z.1
Chen, Y.Q.2
Guo, T.B.3
Zhu, Y.Q.4
Su, Y.5
Jia, C.6
Wei, M.Q.7
Cheng, Y.F.8
-
39
-
-
77955752248
-
From ZnS nanobelts to ZnO/ZnS heterostructures: Microscopy analysis and their tunable optical property
-
Liu, W.; Wang, R. M.; Wang, N. From ZnS nanobelts to ZnO/ZnS heterostructures: Microscopy analysis and their tunable optical property. Appl. Phys. Lett. 2010, 97, 041916.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 041916
-
-
Liu, W.1
Wang, R.M.2
Wang, N.3
|