메뉴 건너뛰기




Volumn 102, Issue 2, 2015, Pages 457-477

Corrections: On the degrees of freedom of reduced-rank estimators in multivariate regression (Biometrika (2015) 102 (457-477) DOI: 10.1093/biomet/asu067);On the degrees of freedom of reduced-rank estimators in multivariate regression

Author keywords

Adaptive nuclear norm; Degrees of freedom; Model selection; Multivariate regression; Reduced rank regression; Singular value decomposition

Indexed keywords


EID: 84941560763     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asx080     Document Type: Erratum
Times cited : (42)

References (57)
  • 1
    • 69949186291 scopus 로고    scopus 로고
    • Identifiability of parameters in latent structure models with many observed variables
    • ALLMAN, E. S., MATIAS, C. & RHODES, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. Ann. Statist. 37, 3099-132.
    • (2009) Ann. Statist. , vol.37 , pp. 3099-3132
    • Allman, E.S.1    Matias, C.2    Rhodes, J.A.3
  • 2
    • 0001497505 scopus 로고
    • Estimating linear restrictions on regression coefficients for multivariate normal distributions
    • ANDERSON, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann. Math. Statist. 22, 327-51.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 327-351
    • Anderson, T.W.1
  • 3
    • 0033236914 scopus 로고    scopus 로고
    • Asymptotic distribution of the reduced rank regression estimator under general conditions
    • ANDERSON, T. W. (1999). Asymptotic distribution of the reduced rank regression estimator under general conditions. Ann. Statist. 27, 1141-54.
    • (1999) Ann. Statist. , vol.27 , pp. 1141-1154
    • Anderson, T.W.1
  • 4
    • 0347985232 scopus 로고    scopus 로고
    • Reduced rank regression in cointegrated models
    • ANDERSON, T. W. (2002a). Reduced rank regression in cointegrated models. J. Economet. 106, 203-16.
    • (2002) J. Economet. , vol.106 , pp. 203-216
    • Anderson, T.W.1
  • 5
    • 34548412340 scopus 로고    scopus 로고
    • Specification and misspecification in reduced rank regression
    • ANDERSON, T. W. (2002b). Specification and misspecification in reduced rank regression. Sankhya A 64, 193-205.
    • (2002) Sankhya A , vol.64 , pp. 193-205
    • Anderson, T.W.1
  • 7
    • 0000927638 scopus 로고    scopus 로고
    • Predicting multivariate responses in multiple linear regression
    • BREIMAN, L. & FRIEDMAN, J. H. (1997). Predicting multivariate responses in multiple linear regression. J. R. Statist. Soc. B 59, 3-37.
    • (1997) J. R. Statist. Soc. B , vol.59 , pp. 3-37
    • Breiman, L.1    Friedman, J.H.2
  • 8
    • 82655182661 scopus 로고    scopus 로고
    • Optimal selection of reduced rank estimators of high-dimensional matrices
    • BUNEA, F., SHE, Y. & WEGKAMP, M. H. (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Statist. 39, 1282-309.
    • (2011) Ann. Statist. , vol.39 , pp. 1282-1309
    • Bunea, F.1    She, Y.2    Wegkamp, M.H.3
  • 9
    • 84873329281 scopus 로고    scopus 로고
    • Joint variable and rank selection for parsimonious estimation of high-dimensional matrices
    • BUNEA, F., SHE, Y. & WEGKAMP, M. H. (2012). Joint variable and rank selection for parsimonious estimation of high-dimensional matrices. Ann. Statist. 40, 2359-88.
    • (2012) Ann. Statist. , vol.40 , pp. 2359-2388
    • Bunea, F.1    She, Y.2    Wegkamp, M.H.3
  • 10
    • 84858281659 scopus 로고    scopus 로고
    • Reduced-rank stochastic regression with a sparse singular value decomposition
    • CHEN, K., CHAN, K. S. & STENSETH, N. R. (2012). Reduced-rank stochastic regression with a sparse singular value decomposition. J. R. Statist. Soc. B 74, 203-21.
    • (2012) J. R. Statist. Soc. B , vol.74 , pp. 203-221
    • Chen, K.1    Chan, K.S.2    Stenseth, N.R.3
  • 11
    • 84890351391 scopus 로고    scopus 로고
    • Reduced rank regression via adaptive nuclear norm penalization
    • CHEN, K., DONG, H. & CHAN, K.-S. (2013). Reduced rank regression via adaptive nuclear norm penalization. Biometrika 100, 901-20.
    • (2013) Biometrika , vol.100 , pp. 901-920
    • Chen, K.1    Dong, H.2    Chan, K.-S.3
  • 12
    • 84871942172 scopus 로고    scopus 로고
    • Sparse reduced-rank regression for simultaneous dimension reduction and variable selection
    • CHEN, L. & HUANG, J. Z. (2012). Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. J. Am. Statist. Assoc. 107, 1533-45.
    • (2012) J. Am. Statist. Assoc. , vol.107 , pp. 1533-1545
    • Chen, L.1    Huang, J.Z.2
  • 14
    • 0001495113 scopus 로고
    • Procedures for reduced-rank regression
    • DAVIES, P. T. & TSO, M. K.-S. (1982). Procedures for reduced-rank regression. Appl. Statist. 31, 244-55.
    • (1982) Appl. Statist. , vol.31 , pp. 244-255
    • Davies, P.T.1    Tso, M.K.-S.2
  • 15
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • DONOHO, D. & JOHNSTONE, I. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90, 1200-24.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.1    Johnstone, I.2
  • 16
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • ECKART, C. & YOUNG, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika 1, 211-8.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 18
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • GOLUB, G., HEATH, M. & WAHBA, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-23.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.1    Heath, M.2    Wahba, G.3
  • 22
    • 84946633097 scopus 로고
    • Selection of the best subset in regression analysis
    • HOCKING, R. R. & LESLIE, R. N. (1967). Selection of the best subset in regression analysis. Technometrics 9, 531-40.
    • (1967) Technometrics , vol.9 , pp. 531-540
    • Hocking, R.R.1    Leslie, R.N.2
  • 23
    • 0001523230 scopus 로고
    • The most predictable criterion
    • HOTELLING, H. (1935). The most predictable criterion. J. Educ. Psychol. 26, 139-42.
    • (1935) J. Educ. Psychol. , vol.26 , pp. 139-142
    • Hotelling, H.1
  • 24
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linear model
    • IZENMAN, A. J. (1975). Reduced-rank regression for the multivariate linear model. J. Mult. Statist. 5, 248-64.
    • (1975) J. Mult. Statist. , vol.5 , pp. 248-264
    • Izenman, A.J.1
  • 27
    • 34248594305 scopus 로고    scopus 로고
    • Multivariate reduced-rank nonlinear time series modeling
    • LI, M. C. & CHAN, K. S. (2007).Multivariate reduced-rank nonlinear time series modeling. Statist. Sinica 17, 139-59.
    • (2007) Statist. Sinica , vol.17 , pp. 139-159
    • Li, M.C.1    Chan, K.S.2
  • 28
    • 41949088050 scopus 로고    scopus 로고
    • L1-norm quantile regression
    • LI, Y. & ZHU, J. (2008). L1-norm quantile regression. J. Comp. Graph. Statist. 17, 163-85.
    • (2008) J. Comp. Graph. Statist. , vol.17 , pp. 163-185
    • Li, Y.1    Zhu, J.2
  • 29
    • 84857638087 scopus 로고    scopus 로고
    • Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression
    • LU, Z., MONTEIRO, R. & YUAN, M. (2012). Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression. Math. Programming 131, 163-94.
    • (2012) Math. Programming , vol.131 , pp. 163-194
    • Lu, Z.1    Monteiro, R.2    Yuan, M.3
  • 31
    • 84915425007 scopus 로고
    • Some comments on Cp
    • MALLOWS, C. L. (1973). Some comments on Cp. Technometrics 15, 661-75.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 32
    • 0000957593 scopus 로고
    • Principal components regression with exploratory statistical research
    • MASSY, W. F. (1965). Principal components regression with exploratory statistical research. J. Am. Statist. Assoc. 60, 234-46.
    • (1965) J. Am. Statist. Assoc. , vol.60 , pp. 234-246
    • Massy, W.F.1
  • 33
    • 0034237944 scopus 로고    scopus 로고
    • On the degrees of freedom in shape-restricted regression
    • MEYER, M. & WOODROOFE, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28, 1083-104.
    • (2000) Ann. Statist. , vol.28 , pp. 1083-1104
    • Meyer, M.1    Woodroofe, M.2
  • 34
    • 0000178613 scopus 로고
    • On the reciprocal of the general algebraic matrix
    • MOORE, E. H. (1920). On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394-5.
    • (1920) Bull. Am. Math. Soc. , vol.26 , pp. 394-395
    • Moore, E.H.1
  • 35
    • 82055164253 scopus 로고    scopus 로고
    • Reduced rank ridge regression and its kernel extensions
    • MUKHERJEE, A. & ZHU, J. (2011). Reduced rank ridge regression and its kernel extensions. Statist. Anal. Data Mining 4, 612-22.
    • (2011) Statist. Anal. Data Mining , vol.4 , pp. 612-622
    • Mukherjee, A.1    Zhu, J.2
  • 36
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • NEGHABAN, S. &WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39, 1069-97.
    • (2011) Ann. Statist. , vol.39 , pp. 1069-1097
    • Neghaban, S.1    Wainwright, M.J.2
  • 37
    • 33646253883 scopus 로고    scopus 로고
    • Critical points of the singular value decomposition
    • O'NEIL, K. (2005). Critical points of the singular value decomposition. SIAM J. Matrix Anal. Appl. 27, 459-73.
    • (2005) SIAM J. Matrix Anal. Appl. , vol.27 , pp. 459-473
    • O'Neil, K.1
  • 38
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • PENROSE, R. (1955). A generalized inverse for matrices. Proc. Camb. Phil. Soc. 51, 406-13.
    • (1955) Proc. Camb. Phil. Soc. , vol.51 , pp. 406-413
    • Penrose, R.1
  • 39
    • 0006580818 scopus 로고
    • Matrix approximations and reduction of dimensionality in multivariate statistical analysis
    • P. R. Krishnaiah, Ed. Amsterdam: North-Holland
    • RAO, C. R. (1978).Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In Proc. 5th Int. Symp. Mult. Anal., P. R. Krishnaiah, ed. Amsterdam: North-Holland, pp. 3-22.
    • (1978) Proc. 5th Int. Symp. Mult. Anal. , pp. 3-22
    • Rao, C.R.1
  • 41
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional low-rank matrices
    • ROHDE, A. & TSYBAKOV, A. B. (2011). Estimation of high-dimensional low-rank matrices. Ann. Statist. 39, 887-930.
    • (2011) Ann. Statist. , vol.39 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.B.2
  • 42
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-4.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 43
    • 79952701411 scopus 로고    scopus 로고
    • Thresholding-based iterative selection procedures for model selection and shrinkage
    • SHE, Y. (2009). Thresholding-based iterative selection procedures for model selection and shrinkage. Electron. J. Statist. 3, 384-415.
    • (2009) Electron. J. Statist. , vol.3 , pp. 384-415
    • She, Y.1
  • 44
    • 84880174018 scopus 로고    scopus 로고
    • Reduced rank vector generalized linear models for feature extraction
    • SHE, Y. (2013). Reduced rank vector generalized linear models for feature extraction. Statist. Infer. 6, 197-209.
    • (2013) Statist. Infer. , vol.6 , pp. 197-209
    • She, Y.1
  • 45
    • 0036489055 scopus 로고    scopus 로고
    • Adaptive model selection
    • SHEN, X. & YE, J. (2002). Adaptive model selection. J. Am. Statist. Assoc. 97, 210-21.
    • (2002) J. Am. Statist. Assoc. , vol.97 , pp. 210-221
    • Shen, X.1    Ye, J.2
  • 46
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • STEIN, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135-51.
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.M.1
  • 47
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 48
    • 84872012577 scopus 로고    scopus 로고
    • Degrees of freedom in lasso problems
    • TIBSHIRANI, R. J. & TAYLOR, J. (2011). Degrees of freedom in lasso problems. Ann. Statist. 40, 1198-232.
    • (2011) Ann. Statist. , vol.40 , pp. 1198-1232
    • Tibshirani, R.J.1    Taylor, J.2
  • 49
    • 54049093683 scopus 로고    scopus 로고
    • Admissibility and minimaxity of Bayes estimators for a normal mean matrix
    • TSUKUMA, H. (2008). Admissibility and minimaxity of Bayes estimators for a normal mean matrix. J. Mult. Anal. 99, 2251-64.
    • (2008) J. Mult. Anal. , vol.99 , pp. 2251-2264
    • Tsukuma, H.1
  • 50
    • 0012538727 scopus 로고
    • Reduced rank models with two sets of regressors
    • VELU, R. (1991). Reduced rank models with two sets of regressors. Appl. Statist. 40, 159-70.
    • (1991) Appl. Statist. , vol.40 , pp. 159-170
    • Velu, R.1
  • 52
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D. M., TIBSHIRANI, R. J. & HASTIE, T. J. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-34.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.J.2    Hastie, T.J.3
  • 53
    • 0002692783 scopus 로고
    • Soft modeling by latent variables: The nonlinear iterative partial least squares approach
    • Papers in Honour of M. S. Bartlett, J. Gani, ed. London: Academic Press
    • WOLD, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial least squares approach. In Perspectives in Probability and Statistics. Papers in Honour of M. S. Bartlett, J. Gani, ed. London: Academic Press.
    • (1975) Perspectives in Probability and Statistics
    • Wold, H.1
  • 54
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • YE, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Assoc. 93, 120-31.
    • (1998) J. Am. Statist. Assoc. , vol.93 , pp. 120-131
    • Ye, J.1
  • 55
    • 84993729357 scopus 로고    scopus 로고
    • Reduced rank vector generalized linear models
    • YEE, T. & HASTIE, T. J. (2003). Reduced rank vector generalized linear models. Statist. Mod. 3, 15-41.
    • (2003) Statist. Mod. , vol.3 , pp. 15-41
    • Yee, T.1    Hastie, T.J.2
  • 56
    • 34249004618 scopus 로고    scopus 로고
    • Dimension reduction and coefficient estimation in multivariate linear regression
    • YUAN, M., EKICI, A., LU, Z. & MONTEIRO, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. J. R. Statist. Soc. B 69, 329-46.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 329-346
    • Yuan, M.1    Ekici, A.2    Lu, Z.3    Monteiro, R.4
  • 57
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • ZOU, H., HASTIE, T. J.&TIBSHIRANI, R. J. (2007). On the "degrees of freedom" of the lasso. Ann. Statist. 35, 2173-92.
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.J.2    Tibshirani, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.