메뉴 건너뛰기




Volumn 100, Issue 4, 2013, Pages 901-920

Reduced rank regression via adaptive nuclear norm penalization

Author keywords

Low rank approximation; Nuclear norm penalization; Reduced rank regression; Singular value decomposition

Indexed keywords


EID: 84890351391     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/ast036     Document Type: Article
Times cited : (229)

References (50)
  • 1
    • 0034383789 scopus 로고    scopus 로고
    • Multivariate prediction using softly shrunk reduced-rank regression
    • ALDRIN, M. (2000). Multivariate prediction using softly shrunk reduced-rank regression. Am. Statistician 54, 29-34.
    • (2000) Am. Statistician , vol.54 , pp. 29-34
    • Aldrin, M.1
  • 2
    • 0001497505 scopus 로고
    • Estimating linear restrictions on regression coefficients for multivariate normal distributions
    • ANDERSON, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann. Math. Statist. 22, 327-51.
    • (1951) Ann. Math. Statist , vol.22 , pp. 327-351
    • Anderson, T.W.1
  • 3
    • 0033236914 scopus 로고    scopus 로고
    • Asymptotic distribution of the reduced rank regression estimator under general conditions
    • ANDERSON, T. W. (1999). Asymptotic distribution of the reduced rank regression estimator under general conditions. Ann. Statist. 27, 1141-54.
    • (1999) Ann. Statist , vol.27 , pp. 1141-1154
    • Anderson, T.W.1
  • 4
    • 34548412340 scopus 로고    scopus 로고
    • Specification and misspecification in reduced rank regression
    • ANDERSON, T. W. (2002). Specification and misspecification in reduced rank regression. Sankhȳa 64, 193-205.
    • (2002) Sankhȳa , vol.64 , pp. 193-205
    • Anderson, T.W.1
  • 5
    • 82655182661 scopus 로고    scopus 로고
    • Optimal selection of reduced rank estimators of high-dimensional matrices
    • BUNEA, F., SHE, Y. &WEGKAMP, M. (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Statist. 39, 1282-309.
    • (2011) Ann. Statist , vol.39 , pp. 1282-1309
    • Bunea, F.1    She, Y.2    Wegkamp, M.3
  • 6
    • 84873329281 scopus 로고    scopus 로고
    • Joint variable and rank selection for parsimonious estimation of high dimensional matrices
    • BUNEA, F., SHE, Y. & WEGKAMP, M. (2012). Joint variable and rank selection for parsimonious estimation of high dimensional matrices. Ann. Statist. 40, 2359-88.
    • (2012) Ann. Statist , vol.40 , pp. 2359-2388
    • Bunea, F.1    She, Y.2    Wegkamp, M.3
  • 7
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • CAI, J.-F., CAND̀ES, E. J. & SHEN, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM J. Optimiz. 20, 1956-82.
    • (2010) SIAM J. Optimiz , vol.20 , pp. 1956-1982
    • Cai, J.-F.1    Cand̀es, E.J.2    Shen, Z.3
  • 9
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • CAND̀ES, E. J. & RECHT, B. (2009). Exact matrix completion via convex optimization. Foundat. Comp. Math. 9, 717-72.
    • (2009) Foundat. Comp. Math , vol.9 , pp. 717-772
    • Cand̀es, E.J.1    Recht, B.2
  • 10
    • 84858281659 scopus 로고    scopus 로고
    • Reduced rank stochastic regression with a sparse singular value decomposition
    • CHEN, K., CHAN, K.-S. & STENSETH, N. C. (2012). Reduced rank stochastic regression with a sparse singular value decomposition. J. R. Statist. Soc. B 74, 203-21.
    • (2012) J. R. Statist. Soc. B , vol.74 , pp. 203-221
    • Chen, K.1    Chan, K.-S.2    Stenseth, N.C.3
  • 11
    • 84871942172 scopus 로고    scopus 로고
    • Sparse reduced-rank regression for simultaneous dimension reduction and variable selection
    • CHEN, L. & HUANG, J. Z. (2012). Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. J. Am. Statist. Assoc. 107, 1533-45.
    • (2012) J. Am. Statist. Assoc. , vol.107 , pp. 1533-1545
    • Chen, L.1    Huang, J.Z.2
  • 13
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • DONOHO, D. L. & JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90, 1200-24.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 14
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • ECKART, C. & YOUNG, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika 1, 211-8.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 15
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • FAN, J. & LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-60.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 16
    • 0004132473 scopus 로고    scopus 로고
    • Toronto: Dover Publications
    • FRANKLIN, J. (2000). Matrix Theory. Toronto: Dover Publications.
    • (2000) Matrix Theory
    • Franklin, J.1
  • 17
    • 79953868412 scopus 로고    scopus 로고
    • Virtual CGH: An integrative approach to predict genetic abnormalities from gene expression microarray data applied in lymphoma
    • GENG, H., IQBAL, J., CHAN, W. C. & ALI, H. H. (2011). Virtual CGH: An integrative approach to predict genetic abnormalities from gene expression microarray data applied in lymphoma. BMC Med. Genom. 4, 32.
    • (2011) BMC Med. Genom. , vol.4 , pp. 32
    • Geng, H.1    Iqbal, J.2    Chan, W.C.3    Ali, H.H.4
  • 18
    • 0024682770 scopus 로고
    • Updating the inverse of a matrix
    • HAGER, W. W. (1989). Updating the inverse of a matrix. SIAM Rev. 31, 221-39.
    • (1989) SIAM Rev. , vol.31 , pp. 221-239
    • Hager, W.W.1
  • 21
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • HUANG, J., HOROWITZ, J. L. & MA, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36, 587-613.
    • (2008) Ann. Statist , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.3
  • 22
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linear model
    • IZENMAN, A. J. (1975). Reduced-rank regression for the multivariate linear model. J. Mult. Anal. 5, 248-64.
    • (1975) J. Mult. Anal. , vol.5 , pp. 248-264
    • Izenman, A.J.1
  • 23
    • 84859835859 scopus 로고    scopus 로고
    • Rank penalized estimators for high-dimensional matrices
    • KLOPP, O. (2011). Rank penalized estimators for high-dimensional matrices. Electron. J. Statist. 5, 1161-83.
    • (2011) Electron. J. Statist , vol.5 , pp. 1161-1183
    • Klopp, O.1
  • 24
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • KNIGHT, K. & FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-78.
    • (2000) Ann. Statist , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 25
    • 82655171609 scopus 로고    scopus 로고
    • Nuclear norm penalization and optimal rates for noisy low rank matrix completion
    • KOLTCHINSKII, V., LOUNICI, K. & TSYBAKOV, A. (2011). Nuclear norm penalization and optimal rates for noisy low rank matrix completion. Ann. Statist. 39, 2302-29.
    • (2011) Ann. Statist , vol.39 , pp. 2302-2329
    • Koltchinskii, V.1    Lounici, K.2    Tsybakov, A.3
  • 26
    • 34248594305 scopus 로고    scopus 로고
    • Multivariate reduced-rank nonlinear time series modeling
    • LI, M.-C. & CHAN, K.-S. (2007). Multivariate reduced-rank nonlinear time series modeling. Statist. Sinica 17, 139-59.
    • (2007) Statist. Sinica , vol.17 , pp. 139-159
    • Li, M.-C.1    Chan, K.-S.2
  • 27
    • 84857638087 scopus 로고    scopus 로고
    • Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression
    • LU, Z., MONTEIRO, R. D. C. & YUAN, M. (2012). Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression. Math. Program. 131, 163-94.
    • (2012) Math. Program , vol.131 , pp. 163-194
    • Lu, Z.1    Monteiro, R.D.C.2    Yuan, M.3
  • 29
    • 34250407557 scopus 로고
    • A trace inequality of John von Neumann
    • MIRSKY, L. (1975). A trace inequality of John von Neumann. Monatshefte Math. 79, 303-6.
    • (1975) Monatshefte Math , vol.79 , pp. 303-306
    • Mirsky, L.1
  • 30
    • 82055164253 scopus 로고    scopus 로고
    • Reduced rank ridge regression and its kernel extensions
    • MUKHERJEE, A. & ZHU, J. (2011). Reduced rank ridge regression and its kernel extensions. Statist. Anal. Data Mining 4, 612-22.
    • (2011) Statist. Anal. Data Mining , vol.4 , pp. 612-622
    • Mukherjee, A.1    Zhu, J.2
  • 31
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • NEGAHBAN, S. &WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39, 1069-97.
    • (2011) Ann. Statist , vol.39 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 32
    • 62549145418 scopus 로고    scopus 로고
    • A robust hybrid of lasso and ridge regression
    • OWEN, A. B. (2007). A robust hybrid of lasso and ridge regression. Contemp. Math. 443, 59-71.
    • (2007) Contemp. Math , vol.443 , pp. 59-71
    • Owen, A.B.1
  • 33
    • 84870267097 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • PENG, J., ZHU, J., BERGAMASCHI, A., HAN, W., NOH, D.-Y., POLLACK, J. R. & WANG, P. (2010). Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann. Appl. Statist. 4, 53-77.
    • (2010) Ann. Appl. Statist , vol.4 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3    Han, W.4    Noh, D.-Y.5    Pollack, J.R.6    Wang, P.7
  • 35
    • 84863304598 scopus 로고    scopus 로고
    • R DEVELOPMENT CORE TEAM R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R DEVELOPMENT CORE TEAM (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
    • (2013) R: A Language and Environment for Statistical Computing
  • 37
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional low-rank matrices
    • ROHDE, A. & TSYBAKOV, A. (2011). Estimation of high-dimensional low-rank matrices. Ann. Statist. 39, 887-930.
    • (2011) Ann. Statist , vol.39 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.2
  • 38
    • 84880174018 scopus 로고    scopus 로고
    • Reduced rank vector generalized linear models for feature extraction
    • SHE, Y. (2013). Reduced rank vector generalized linear models for feature extraction. Statist. Interface 2, 197-209.
    • (2013) Statist. Interface , vol.2 , pp. 197-209
    • She, Y.1
  • 39
    • 0016317392 scopus 로고
    • Cross-validation and multinomial prediction
    • STONE, M. (1974). Cross-validation and multinomial prediction. Biometrika 61, 509-15.
    • (1974) Biometrika , vol.61 , pp. 509-515
    • Stone, M.1
  • 40
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. J. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 41
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • TOH, K.-C. & YUN, S. (2010). An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optimiz. 6, 615-40.
    • (2010) Pac. J. Optimiz. , vol.6 , pp. 615-640
    • Toh, K.-C.1    Yun, S.2
  • 42
    • 0000011340 scopus 로고
    • Some matrix inequalities and metrization of matrix-space
    • VON NEUMANN, J. (1937). Some matrix inequalities and metrization of matrix-space. Tomsk Univ. Rev. 1, 286-300.
    • (1937) Tomsk Univ. Rev. , vol.1 , pp. 286-300
    • Von Neumann, J.1
  • 43
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D. M., TIBSHIRANI, R. J. & HASTIE, T. J. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-34.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.J.2    Hastie, T.J.3
  • 44
    • 84890336810 scopus 로고    scopus 로고
    • Reduced rank vector generalized linear models
    • YEE, T. & HASTIE, T. J. (2003). Reduced rank vector generalized linear models. Statist. Mod., 367-78.
    • (2003) Statist. Mod. , pp. 367-378
    • Yee, T.1    Hastie, T.J.2
  • 45
    • 34249004618 scopus 로고    scopus 로고
    • Dimension reduction and coefficient estimation in multivariate linear regression
    • YUAN, M., EKICI, A., LU, Z. & MONTEIRO, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. J. R. Statist. Soc. B 69, 329-46.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 329-346
    • Yuan, M.1    Ekici, A.2    Lu, Z.3    Monteiro, R.4
  • 47
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-29.
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 48
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • ZOU, H. & HASTIE, T. J. (2005). Regularization and variable selection via the elastic net. J. R. Statist. Soc. B 67, 301-20.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.J.2
  • 49
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • ZOU, H. & LI, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36, 1509-33.
    • (2008) Ann. Statist , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2
  • 50
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • ZOU, H. & ZHANG, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Ann. Statist. 37, 1733-51.
    • (2009) Ann. Statist , vol.37 , pp. 1733-1751
    • Zou, H.1    Zhang, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.