-
1
-
-
0001882616
-
Fast algorithms for mining association rules
-
September, Santiago, Chile. Retrieved from
-
Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB. Santiago, Chile. Retrieved from http://www.rsrikant.com/papers/vldb94.pdf
-
(1994)
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
16644377260
-
Data mining as a tool for research and knowledge development in nursing
-
Berger, A. M., & Berger, C. R. (2004). Data mining as a tool for research and knowledge development in nursing. CIN: Computers, Informatics, Nursing, 22, 123-131.
-
(2004)
CIN: Computers, Informatics, Nursing
, vol.22
, pp. 123-131
-
-
Berger, A.M.1
Berger, C.R.2
-
4
-
-
31744431751
-
Trends in data mining and knowledge discovery
-
N. R. Pal & L. Jain (Eds.), London: Springer
-
Cios, K. J., & Kurgan, L. (2005). Trends in data mining and knowledge discovery. In N. R. Pal & L. Jain (Eds.), Advanced techniques in data mining and knowledge discovery, (pp. 1-26). London: Springer.
-
(2005)
Advanced techniques in data mining and knowledge discovery
, pp. 1-26
-
-
Cios, K.J.1
Kurgan, L.2
-
6
-
-
0003804382
-
-
Boston, MA:Kluwer Academic
-
Cios, K. J., Pedrycz, W., & Swiniarski, R. (1998). Data mining methods for knowledge discovery. Boston, MA:Kluwer Academic.
-
(1998)
Data mining methods for knowledge discovery
-
-
Cios, K.J.1
Pedrycz, W.2
Swiniarski, R.3
-
7
-
-
84892213704
-
-
Heidelberg, Germany: Springer
-
Cios, K. J., Pedrycz, W., Swiniarski, R., & Kurgan L. (2007). Data mining: A knowledge discovery approach. Heidelberg, Germany: Springer.
-
(2007)
Data mining: A knowledge discovery approach
-
-
Cios, K.J.1
Pedrycz, W.2
Swiniarski, R.3
Kurgan, L.4
-
8
-
-
84887054161
-
An application of one-class support vector machines to nosocomial infection detection. In M. Fieschi (Ed.)
-
Amsterdam, the Netherlands:IOS Press
-
Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Pellegrini, C., & Geissbuhler, A. (2004). An application of one-class support vector machines to nosocomial infection detection. In M. Fieschi (Ed.), MedINFO 2004. (Studies in health technology and informatics), 107(Pt. 1), 716-720. Amsterdam, the Netherlands:IOS Press.
-
(2004)
MedINFO 2004. (Studies in health technology and informatics)
, vol.107
, pp. 716-720
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Pellegrini, C.5
Geissbuhler, A.6
-
9
-
-
0026161454
-
Model selection in covariance structures analysis and "problem" of sample size: A clarification
-
Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and "problem" of sample size: A clarification. Psychological Bulletin, 109, 512-519.
-
(1991)
Psychological Bulletin
, vol.109
, pp. 512-519
-
-
Cudeck, R.1
Henly, S.J.2
-
10
-
-
0030649484
-
Solving the multi-instance problem with axis-parallel rectangles
-
Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multi-instance problem with axis-parallel rectangles. Artificial Intelligence Journal, 89, 31-71.
-
(1997)
Artificial Intelligence Journal
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
11
-
-
0032652234
-
Method of particles in visual clustering of multi-dimensional and large data sets
-
Dzwinel, W., & Błasiak, J. (1999). Method of particles in visual clustering of multi-dimensional and large data sets. Future Generation Computer Systems, 15, 365-379.
-
(1999)
Future Generation Computer Systems
, vol.15
, pp. 365-379
-
-
Dzwinel, W.1
Błasiak, J.2
-
12
-
-
85130734369
-
Knowledge discovery and data mining:Towards a unifying framework
-
August, Portland, OR
-
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996, August). Knowledge discovery and data mining:Towards a unifying framework. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (pp. 82-88). Portland, OR.
-
(1996)
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 82-88
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
13
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
14
-
-
0041527125
-
A predictivistic primer
-
A. Zellner (Ed.), Amsterdam, the Netherlands: North Holland
-
Geisser, S. (1980). A predictivistic primer. In A. Zellner (Ed.), Bayesian analysis in econometrics and statistics (pp. 363-381). Amsterdam, the Netherlands: North Holland.
-
(1980)
Bayesian analysis in econometrics and statistics
, pp. 363-381
-
-
Geisser, S.1
-
16
-
-
0004060921
-
-
Unpublished doctoral dissertation. The University of Waikato, Hamilton, New Zealand. Retrieved from
-
Hall, M. A. (1999). Correlation-based feature subset selection for machine learning. Unpublished doctoral dissertation. The University of Waikato, Hamilton, New Zealand. Retrieved from www.cs.waikato.ac.nz/-mhall/thesis.pdf
-
(1999)
Correlation-based feature subset selection for machine learning
-
-
Hall, M.A.1
-
18
-
-
0032367976
-
Data mining: Statistics and more?
-
Hand, D. T. (1998). Data mining: Statistics and more? American Statistician, 52, 112-118.
-
(1998)
American Statistician
, vol.52
, pp. 112-118
-
-
Hand, D.T.1
-
19
-
-
8744299420
-
Pattern discovery and detection: A unified statistical methodology
-
Hand, D. T., & Bolton, R. J. (2004). Pattern discovery and detection: A unified statistical methodology. Journal of Applied Statistics, 31, 885-924.
-
(2004)
Journal of Applied Statistics
, vol.31
, pp. 885-924
-
-
Hand, D.T.1
Bolton, R.J.2
-
20
-
-
77954316473
-
Machine learning of clinical performance in a pancreatic cancer database
-
Hayward, J., Alvarez, S. A., Ruiz, C., Sullivan, M., Tseng, J., & Whalen, G. (2010). Machine learning of clinical performance in a pancreatic cancer database. Artificial Intelligence in Medicine, 49, 187-195.
-
(2010)
Artificial Intelligence in Medicine
, vol.49
, pp. 187-195
-
-
Hayward, J.1
Alvarez, S.A.2
Ruiz, C.3
Sullivan, M.4
Tseng, J.5
Whalen, G.6
-
21
-
-
84937508902
-
-
Department of Computer Science, University of Waikato, Hamilton, NZ. Retrieved from
-
Hempstalk, K., Frank, E., & Witten, I. H. (2007). One-class classification by combining density and class probability estimation. Department of Computer Science, University of Waikato, Hamilton, NZ. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.8501&rep=rep1&type=pdf
-
(2007)
One-class classification by combining density and class probability estimation
-
-
Hempstalk, K.1
Frank, E.2
Witten, I.H.3
-
22
-
-
0030993367
-
Nursing Management Minimum Data Set (NMMDS)
-
Huber, D., Schumacher, L., & Delaney, C. (1997). Nursing Management Minimum Data Set (NMMDS). Journal of Nursing Administration, 27, 42-48.
-
(1997)
Journal of Nursing Administration
, vol.27
, pp. 42-48
-
-
Huber, D.1
Schumacher, L.2
Delaney, C.3
-
23
-
-
84941306732
-
NursingCareWare: Warehousing for nursing care research and knowledge discovery
-
J. Li, D. Aleman, & R. Sikora (Eds.), Retrieved from
-
Hylock, R., Street, W. N., Lu, D.-F., & Currim, F. (2008). NursingCareWare: Warehousing for nursing care research and knowledge discovery. In J. Li, D. Aleman, & R. Sikora (Eds.), Proceedings of the 3rd INFORMS Workshop on Data Mining and Health Informatics (pp. 1-6). Retrieved from http://dollar.biz.uiowa.edu/-street/research/informs08_hylock.pdf
-
(2008)
Proceedings of the 3rd INFORMS Workshop on Data Mining and Health Informatics
, pp. 1-6
-
-
Hylock, R.1
Street, W.N.2
Lu, D.-F.3
Currim, F.4
-
24
-
-
0001217510
-
Clustering by means of medoids
-
Y. Dodge (Ed.), Amsterdam, the Netherlands:North-Holland
-
Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids. In Y. Dodge (Ed.), Statistical data analysis based on the L1 norm and related methods (pp. 405-416). Amsterdam, the Netherlands:North-Holland.
-
(1987)
Statistical data analysis based on the L1 norm and related methods
, pp. 405-416
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
25
-
-
0037240183
-
A taxonomy of dirty data
-
Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., & Lee, D. (2003). A taxonomy of dirty data. Data Mining and Knowledge Discovery, 7, 81-99.
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, pp. 81-99
-
-
Kim, W.1
Choi, B.-J.2
Hong, E.-K.3
Kim, S.-K.4
Lee, D.5
-
26
-
-
85146422424
-
A practical approach to feature selection
-
San Francisco, CA: Morgan Kaufmann
-
Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Ninth International Workshop on Machine Learning (pp. 249-256). San Francisco, CA: Morgan Kaufmann.
-
(1992)
Ninth International Workshop on Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
27
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
28
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
-
(1982)
Biological Cybernetics
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
29
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo, M., & Sklansky, J. (2000). Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 33, 25-41.
-
(2000)
Pattern Recognition
, vol.33
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
30
-
-
1342282151
-
CAIM discretization algorithm
-
Kurgan, L. A., & Cios, K. J. (2004). CAIM discretization algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(2), 145-153.
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, Issue.2
, pp. 145-153
-
-
Kurgan, L.A.1
Cios, K.J.2
-
31
-
-
31744432403
-
Highly scalable and robust rule learner: Performance evaluation and comparison
-
Kurgan, L. A., Cios, K. J., & Dick, S. (2006). Highly scalable and robust rule learner: Performance evaluation and comparison. IEEE Systems, Man, and Cybernetics-Part B: Cybernetics, 36(1), 32-53.
-
(2006)
IEEE Systems, Man, and Cybernetics-Part B: Cybernetics
, vol.36
, Issue.1
, pp. 32-53
-
-
Kurgan, L.A.1
Cios, K.J.2
Dick, S.3
-
33
-
-
84863548871
-
Practices and perspective on building integrated data repositories: Results from a 2010 CTSA survey
-
MacKenzie, S. L., Wyatt, M. C., Schuff, R., Tenenbaum, J. D., & Anderson, N. (2012). Practices and perspective on building integrated data repositories: Results from a 2010 CTSA survey. Journal of the Medical Informatics Association, 19, e119-e124.
-
(2012)
Journal of the Medical Informatics Association
, vol.19
, pp. e119-e124
-
-
MacKenzie, S.L.1
Wyatt, M.C.2
Schuff, R.3
Tenenbaum, J.D.4
Anderson, N.5
-
34
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Berkeley: University of California Press
-
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (pp. 281-297). Berkeley: University of California Press.
-
(1967)
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability
, pp. 281-297
-
-
MacQueen, J.B.1
-
35
-
-
84879920092
-
Discretization of continuous features in clinical datasets
-
Maslove, D. M., Podchiyska, T., & Lowe, H. J. (2013). Discretization of continuous features in clinical datasets. Journal of the American Medical Informatics Association, 20, 544-553.
-
(2013)
Journal of the American Medical Informatics Association
, vol.20
, pp. 544-553
-
-
Maslove, D.M.1
Podchiyska, T.2
Lowe, H.J.3
-
37
-
-
84857558182
-
Visualization of highly-dimensional data in 3D space
-
November, Còrdoba, Spain
-
Nguyen, D. T., Dzwinel, W., & Cios, K. J. (2011, November). Visualization of highly-dimensional data in 3D space. In Intelligent Systems Design and Applications Conference (pp. 225-230). Còrdoba, Spain.
-
(2011)
Intelligent Systems Design and Applications Conference
, pp. 225-230
-
-
Nguyen, D.T.1
Dzwinel, W.2
Cios, K.J.3
-
38
-
-
84887865047
-
Mi-DS: Multiple instance learning algorithm
-
Nguyen, D. T., Nguyen, C. D., Hobson, R., Kurgan, L. A., & Cios, K. J. (2012). mi-DS: Multiple instance learning algorithm. SMC-Part B, 43(1), 143-150.
-
(2012)
SMC-Part B
, vol.43
, Issue.1
, pp. 143-150
-
-
Nguyen, D.T.1
Nguyen, C.D.2
Hobson, R.3
Kurgan, L.A.4
Cios, K.J.5
-
39
-
-
84887865047
-
Mi-DS: Multiple instance learning algorithm
-
Nguyen, D. T., Nguyen, C. D., Hobson, R., Kurgan, L. A., & Cios, K. J. (2013). mi-DS: Multiple instance learning algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 43, 143-154.
-
(2013)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.43
, pp. 143-154
-
-
Nguyen, D.T.1
Nguyen, C.D.2
Hobson, R.3
Kurgan, L.A.4
Cios, K.J.5
-
41
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11), 559-572.
-
(1901)
Philosophical Magazine
, vol.2
, Issue.11
, pp. 559-572
-
-
Pearson, K.1
-
42
-
-
0002877253
-
Discovery, analysis, and presentation of strong rules
-
G. Piatetsky-Shapiro, W. J. Frawley & J. William (Eds.), Cambridge, MA:AAAI/MIT Press
-
Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro, W. J. Frawley & J. William (Eds.), Knowledge discovery in databases (pp. 229-248). Cambridge, MA:AAAI/MIT Press.
-
(1991)
Knowledge discovery in databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
-
44
-
-
84887006810
-
A nonlinear mapping for data structure analysis
-
Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18, 401-409.
-
(1969)
IEEE Transactions on Computers
, vol.18
, pp. 401-409
-
-
Sammon, J.W.1
-
45
-
-
7444228338
-
The CRISP-DM model: The new blueprint for data mining
-
Shearer, C. (2000). The CRISP-DM model: The new blueprint for data mining. Journal of Data Warehousing, 5(4), 13-19.
-
(2000)
Journal of Data Warehousing
, vol.5
, Issue.4
, pp. 13-19
-
-
Shearer, C.1
-
46
-
-
84941282796
-
Fast algorithm for mining multilevel association rule mining
-
Thakur, R. S., Jain, R. C., & Pardasani, K. R. (2007). Fast algorithm for mining multilevel association rule mining. Journal of Computer Science, 1, 76-81.
-
(2007)
Journal of Computer Science
, vol.1
, pp. 76-81
-
-
Thakur, R.S.1
Jain, R.C.2
Pardasani, K.R.3
-
47
-
-
78951492779
-
Predicting improvement in urinary and bowel incontinence for home health patients using electronic health record data
-
Westra, B. L., Savik, K., Oancea, C., Choromanski, L., Holmes, J. H., & Bliss, D. (2011). Predicting improvement in urinary and bowel incontinence for home health patients using electronic health record data. Journal of Wound, Ostomy and Continence Nursing, 38, 77-87.
-
(2011)
Journal of Wound, Ostomy and Continence Nursing
, vol.38
, pp. 77-87
-
-
Westra, B.L.1
Savik, K.2
Oancea, C.3
Choromanski, L.4
Holmes, J.H.5
Bliss, D.6
-
48
-
-
77955168452
-
Achieving "meaningful use" of electronic health records through the integration of the Nursing Management Minimum Data Set
-
Westra, B. L., Subramanian, A., Hart, C. M., Matney, S. A., Wilson, P. S., Huff, S. M., & Delaney, C. W. (2010). Achieving "meaningful use" of electronic health records through the integration of the Nursing Management Minimum Data Set. Journal of Nursing Administration, 40, 336-343.
-
(2010)
Journal of Nursing Administration
, vol.40
, pp. 336-343
-
-
Westra, B.L.1
Subramanian, A.2
Hart, C.M.3
Matney, S.A.4
Wilson, P.S.5
Huff, S.M.6
Delaney, C.W.7
-
49
-
-
84991833843
-
-
3rd ed.). San Francisco, CA: Morgan Kaufmann
-
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining. Practical machine learning tools and techniques (3rd ed.). San Francisco, CA: Morgan Kaufmann.
-
(2011)
Data mining. Practical machine learning tools and techniques
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
-
51
-
-
0023875079
-
Preference segmentation of health care services: The old-fashioneds, value conscious, affluents, and professional want-it-alls
-
Woodside, A. G., Nielsen, R., Walters, F., & Muller, G. D. (1988). Preference segmentation of health care services: The old-fashioneds, value conscious, affluents, and professional want-it-alls. Journal of Health Care Marketing, 8, 14-24.
-
(1988)
Journal of Health Care Marketing
, vol.8
, pp. 14-24
-
-
Woodside, A.G.1
Nielsen, R.2
Walters, F.3
Muller, G.D.4
-
52
-
-
84890419941
-
Data mining with big data
-
Wu, X., Zhu, X., Wu, G., & Ding, W. (2013). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, Issue:99, doi:10.1109/TKDE.2013.109
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, Issue.99
-
-
Wu, X.1
Zhu, X.2
Wu, G.3
Ding, W.4
|