메뉴 건너뛰기




Volumn , Issue , 2015, Pages 725-755

Design and scale-up of sonochemical reactors for food processing and other applications

Author keywords

Bubble dynamics; Cavitational effects; Design configurations; Operating parameters; Scale up; Sonochemical reactors

Indexed keywords


EID: 84941248140     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-1-78242-028-6.00024-7     Document Type: Chapter
Times cited : (12)

References (56)
  • 1
    • 42949105562 scopus 로고    scopus 로고
    • Development of a large sonochemical reactor at a high frequency
    • Asakura Y., Yasuda K., Kato D., Kojima Y., Koda S. Development of a large sonochemical reactor at a high frequency. Chem. Eng. J. 2008, 139:339-343.
    • (2008) Chem. Eng. J. , vol.139 , pp. 339-343
    • Asakura, Y.1    Yasuda, K.2    Kato, D.3    Kojima, Y.4    Koda, S.5
  • 2
    • 73049083533 scopus 로고    scopus 로고
    • Comparison of characterization methods in high frequency sonochemical reactors of differing configurations
    • Auzay S.R., Naffrechoux J.B.E. Comparison of characterization methods in high frequency sonochemical reactors of differing configurations. Ultrason. Sonochem. 2010, 17:547-554.
    • (2010) Ultrason. Sonochem. , vol.17 , pp. 547-554
    • Auzay, S.R.1    Naffrechoux, J.B.E.2
  • 3
    • 51649106336 scopus 로고    scopus 로고
    • Oscillating bubble concentration and its size distribution using acoustic emission spectra
    • Avvaru B., Pandit A.B. Oscillating bubble concentration and its size distribution using acoustic emission spectra. Ultrason. Sonochem. 2009, 16:105-115.
    • (2009) Ultrason. Sonochem. , vol.16 , pp. 105-115
    • Avvaru, B.1    Pandit, A.B.2
  • 4
    • 1842785970 scopus 로고    scopus 로고
    • Ultrasonic bath with longitudinal vibrations: a novel configuration for efficient wastewater treatment
    • Bhirud U.S., Gogate P.R., Wilhelm A.M., Pandit A.B. Ultrasonic bath with longitudinal vibrations: a novel configuration for efficient wastewater treatment. Ultrason. Sonochem. 2004, 11:143-147.
    • (2004) Ultrason. Sonochem. , vol.11 , pp. 143-147
    • Bhirud, U.S.1    Gogate, P.R.2    Wilhelm, A.M.3    Pandit, A.B.4
  • 5
    • 0038009154 scopus 로고    scopus 로고
    • Electrochemical, luminescent and photographic characterisation of cavitation
    • Birkin P., Power J.F., Abdelsalam M.E., Leighton T.G. Electrochemical, luminescent and photographic characterisation of cavitation. Ultrason. Sonochem. 2003, 10:203-208.
    • (2003) Ultrason. Sonochem. , vol.10 , pp. 203-208
    • Birkin, P.1    Power, J.F.2    Abdelsalam, M.E.3    Leighton, T.G.4
  • 6
    • 0242475347 scopus 로고    scopus 로고
    • Enhancement of the knowledge on the ultrasonic reactor behavior by an interdisciplinary approach
    • Boldo P., Renaudin V., Gondrexon N., Chouvellon M. Enhancement of the knowledge on the ultrasonic reactor behavior by an interdisciplinary approach. Ultrason. Sonochem. 2004, 11:27-32.
    • (2004) Ultrason. Sonochem. , vol.11 , pp. 27-32
    • Boldo, P.1    Renaudin, V.2    Gondrexon, N.3    Chouvellon, M.4
  • 8
    • 0002285343 scopus 로고
    • Quantification of cavitation intensity in fluid bulk
    • Chivate M.M., Pandit A.B. Quantification of cavitation intensity in fluid bulk. Ultrason. Sonochem. 1995, 2:S19-S25.
    • (1995) Ultrason. Sonochem. , vol.2 , pp. S19-S25
    • Chivate, M.M.1    Pandit, A.B.2
  • 10
    • 0032021574 scopus 로고    scopus 로고
    • Modeling of three dimension linear pressure field in sonochemical reactors with homogenous and inhomogenous density distribution of cavity bubbles
    • Dahnke S., Keil F. Modeling of three dimension linear pressure field in sonochemical reactors with homogenous and inhomogenous density distribution of cavity bubbles. Ind. Eng. Chem. Res. 1998, 37:848-864.
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 848-864
    • Dahnke, S.1    Keil, F.2
  • 11
    • 0033104479 scopus 로고    scopus 로고
    • Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results
    • Dahnke S., Swamy K., Keil F. Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrason. Sonochem. 1999, 6:31-41.
    • (1999) Ultrason. Sonochem. , vol.6 , pp. 31-41
    • Dahnke, S.1    Swamy, K.2    Keil, F.3
  • 12
    • 54149093700 scopus 로고    scopus 로고
    • Contamination-free high capacity converging waves sonoreactors for the chemical industry
    • Dion J.-L. Contamination-free high capacity converging waves sonoreactors for the chemical industry. Ultrason. Sonochem. 2009, 16:212-220.
    • (2009) Ultrason. Sonochem. , vol.16 , pp. 212-220
    • Dion, J.-L.1
  • 13
    • 0037352178 scopus 로고    scopus 로고
    • Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor
    • Entezari M.H., Petrier C., Devidal P. Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason. Sonochem. 2003, 10:103-108.
    • (2003) Ultrason. Sonochem. , vol.10 , pp. 103-108
    • Entezari, M.H.1    Petrier, C.2    Devidal, P.3
  • 14
    • 0032205358 scopus 로고    scopus 로고
    • Comparison of ultrasound effects in different reactors at 20kHz
    • Faid F., Contamine R., Wilhelm A.M., Delmas H. Comparison of ultrasound effects in different reactors at 20kHz. Ultrason. Sonochem. 1998, 5:119-124.
    • (1998) Ultrason. Sonochem. , vol.5 , pp. 119-124
    • Faid, F.1    Contamine, R.2    Wilhelm, A.M.3    Delmas, H.4
  • 15
    • 0036782078 scopus 로고    scopus 로고
    • Enhancement of ultrasonic cavitation yield by multi-frequency sonication
    • Feng R., Zhao Y., Zhu C., Mason T.J. Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrason. Sonochem. 2002, 9:231-236.
    • (2002) Ultrason. Sonochem. , vol.9 , pp. 231-236
    • Feng, R.1    Zhao, Y.2    Zhu, C.3    Mason, T.J.4
  • 16
    • 77953129393 scopus 로고    scopus 로고
    • Power ultrasonic transducers with extensive radiators for industrial processing
    • Gallego-Juárez J.A., Rodriguez G., Acosta V., Riera E. Power ultrasonic transducers with extensive radiators for industrial processing. Ultrason. Sonochem. 2010, 17:953-964.
    • (2010) Ultrason. Sonochem. , vol.17 , pp. 953-964
    • Gallego-Juárez, J.A.1    Rodriguez, G.2    Acosta, V.3    Riera, E.4
  • 17
    • 0033974857 scopus 로고    scopus 로고
    • Engineering design methods for cavitation reactors I: sonochemical reactors
    • Gogate P.R., Pandit A.B. Engineering design methods for cavitation reactors I: sonochemical reactors. AIChE J. 2000, 46:372-379.
    • (2000) AIChE J. , vol.46 , pp. 372-379
    • Gogate, P.R.1    Pandit, A.B.2
  • 18
    • 1842735471 scopus 로고    scopus 로고
    • Sonochemical reactors: scale up aspects
    • Gogate P.R., Pandit A.B. Sonochemical reactors: scale up aspects. Ultrason. Sonochem. 2004, 11:105-117.
    • (2004) Ultrason. Sonochem. , vol.11 , pp. 105-117
    • Gogate, P.R.1    Pandit, A.B.2
  • 20
    • 0036666565 scopus 로고    scopus 로고
    • Mapping of sonochemical reactors: review, analysis and experimental verification
    • Gogate P.R., Tatake P.A., Kanthale P.M., Pandit A.B. Mapping of sonochemical reactors: review, analysis and experimental verification. AIChE J. 2002, 48:1542-1560.
    • (2002) AIChE J. , vol.48 , pp. 1542-1560
    • Gogate, P.R.1    Tatake, P.A.2    Kanthale, P.M.3    Pandit, A.B.4
  • 21
    • 0038811820 scopus 로고    scopus 로고
    • Large scale sonochemical reactors for process intensification: design and experimental validation
    • Gogate P.R., Mujumdar S., Pandit A.B. Large scale sonochemical reactors for process intensification: design and experimental validation. J. Chem. Technol. Biotechnol. 2003, 78:685-693.
    • (2003) J. Chem. Technol. Biotechnol. , vol.78 , pp. 685-693
    • Gogate, P.R.1    Mujumdar, S.2    Pandit, A.B.3
  • 22
  • 23
    • 0032586410 scopus 로고    scopus 로고
    • Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modelling
    • Gondrexon N., Renaudin V., Petrier C., Boldo P., Bernis A., Gonthier Y. Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modelling. Ultrason. Sonochem. 1999, 5:125-131.
    • (1999) Ultrason. Sonochem. , vol.5 , pp. 125-131
    • Gondrexon, N.1    Renaudin, V.2    Petrier, C.3    Boldo, P.4    Bernis, A.5    Gonthier, Y.6
  • 24
    • 0032007275 scopus 로고    scopus 로고
    • Standing waves in a high frequency sonoreactor: visualisation and effects
    • Gonze E., Gonthier Y., Boldo P., Bernis A. Standing waves in a high frequency sonoreactor: visualisation and effects. Chem. Eng. Sci. 1998, 53:523-532.
    • (1998) Chem. Eng. Sci. , vol.53 , pp. 523-532
    • Gonze, E.1    Gonthier, Y.2    Boldo, P.3    Bernis, A.4
  • 25
    • 14744292455 scopus 로고
    • Chemical effects of continuous and pulsed ultrasound: a comparative study of polymer and iodide oxidation
    • Henglein A., Gutierrez M.J. Chemical effects of continuous and pulsed ultrasound: a comparative study of polymer and iodide oxidation. J. Phys. Chem. 1990, 94:5169-5172.
    • (1990) J. Phys. Chem. , vol.94 , pp. 5169-5172
    • Henglein, A.1    Gutierrez, M.J.2
  • 26
    • 4043072141 scopus 로고    scopus 로고
    • High-frequency acoustic emissions generated by a 20kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study
    • Hodnett M., Chow R., Zeqiri B. High-frequency acoustic emissions generated by a 20kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study. Ultrason. Sonochem. 2004, 12:441-454.
    • (2004) Ultrason. Sonochem. , vol.12 , pp. 441-454
    • Hodnett, M.1    Chow, R.2    Zeqiri, B.3
  • 27
    • 0030148690 scopus 로고    scopus 로고
    • Design, modelling and performance of a novel sonochemical reactor for heterogeneous reactions
    • Horst C., Chen Y.-S., Kunz U., Hoffmann U. Design, modelling and performance of a novel sonochemical reactor for heterogeneous reactions. Chem. Eng. Sci. 1996, 51:1837-1846.
    • (1996) Chem. Eng. Sci. , vol.51 , pp. 1837-1846
    • Horst, C.1    Chen, Y.-S.2    Kunz, U.3    Hoffmann, U.4
  • 28
    • 41549163358 scopus 로고    scopus 로고
    • Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method
    • Hu Y., Zhang Z., Yang C. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method. Ultrason. Sonochem. 2008, 15:665-672.
    • (2008) Ultrason. Sonochem. , vol.15 , pp. 665-672
    • Hu, Y.1    Zhang, Z.2    Yang, C.3
  • 29
    • 0042090474 scopus 로고    scopus 로고
    • Mapping of ultrasonic horn: link primary and secondary effects of ultrasound
    • Kanthale P.M., Gogate P.R., Pandit A.B., Wilhelm A.M. Mapping of ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason. Sonochem. 2003, 10:331-335.
    • (2003) Ultrason. Sonochem. , vol.10 , pp. 331-335
    • Kanthale, P.M.1    Gogate, P.R.2    Pandit, A.B.3    Wilhelm, A.M.4
  • 30
    • 33747821697 scopus 로고    scopus 로고
    • Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results
    • Klima J., Frias-Ferrer A., Gonzalez-Garcý J., Ludvýk J., Saez V., Iniesta J. Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason. Sonochem. 2007, 14:19-28.
    • (2007) Ultrason. Sonochem. , vol.14 , pp. 19-28
    • Klima, J.1    Frias-Ferrer, A.2    Gonzalez-Garcý, J.3    Ludvýk, J.4    Saez, V.5    Iniesta, J.6
  • 31
    • 34247349555 scopus 로고    scopus 로고
    • Mapping the efficacy of new designs for large scale sonochemical reactors
    • Kumar A., Gogate P.R., Pandit A.B. Mapping the efficacy of new designs for large scale sonochemical reactors. Ultrason. Sonochem. 2007, 14:538-544.
    • (2007) Ultrason. Sonochem. , vol.14 , pp. 538-544
    • Kumar, A.1    Gogate, P.R.2    Pandit, A.B.3
  • 32
    • 0037348448 scopus 로고    scopus 로고
    • Feasibility of fluorescence-based imaging of high-energy-density hydrodynamic experiments
    • Lanier N., Barnes C.W., Perea R., Steckle W. Feasibility of fluorescence-based imaging of high-energy-density hydrodynamic experiments. Rev. Sci. Instrum. 2003, 74:2169-2173.
    • (2003) Rev. Sci. Instrum. , vol.74 , pp. 2169-2173
    • Lanier, N.1    Barnes, C.W.2    Perea, R.3    Steckle, W.4
  • 34
    • 41549104877 scopus 로고    scopus 로고
    • Study on degradation of dimethoate solution in ultrasonic airlift loop reactor
    • Liu Y.N., Jin D., Lu X.P., Han P.F. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor. Ultrason. Sonochem. 2008, 15:755-760.
    • (2008) Ultrason. Sonochem. , vol.15 , pp. 755-760
    • Liu, Y.N.1    Jin, D.2    Lu, X.P.3    Han, P.F.4
  • 36
    • 0034307265 scopus 로고    scopus 로고
    • Large scale sonochemical processing: aspiration and actuality
    • Mason T.J. Large scale sonochemical processing: aspiration and actuality. Ultrason. Sonochem. 2000, 7:145-149.
    • (2000) Ultrason. Sonochem. , vol.7 , pp. 145-149
    • Mason, T.J.1
  • 37
    • 0038009156 scopus 로고    scopus 로고
    • Sonochemistry and sonoprocessing: the link, the trends and (probably) the future
    • Mason T.J. Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason. Sonochem. 2003, 10:175-179.
    • (2003) Ultrason. Sonochem. , vol.10 , pp. 175-179
    • Mason, T.J.1
  • 38
    • 51449086007 scopus 로고    scopus 로고
    • Effect of reaction vessel diameter on sonochemical efficiency and cavitation dynamics
    • Nanzai B., Okitsu K., Takenaka N., Bandow H., Tajima N., Maeda Y. Effect of reaction vessel diameter on sonochemical efficiency and cavitation dynamics. Ultrason. Sonochem. 2009, 16:163-168.
    • (2009) Ultrason. Sonochem. , vol.16 , pp. 163-168
    • Nanzai, B.1    Okitsu, K.2    Takenaka, N.3    Bandow, H.4    Tajima, N.5    Maeda, Y.6
  • 39
    • 45949127155 scopus 로고
    • Acoustic cavitation
    • Neppiras E.A. Acoustic cavitation. Phys. Rep. 1980, 61:159-251.
    • (1980) Phys. Rep. , vol.61 , pp. 159-251
    • Neppiras, E.A.1
  • 40
    • 33847258771 scopus 로고    scopus 로고
    • Ultrasonic disintegration of biosolids for improved biodegradation
    • Nickel K., Neis U. Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason. Sonochem. 2007, 14:450-455.
    • (2007) Ultrason. Sonochem. , vol.14 , pp. 450-455
    • Nickel, K.1    Neis, U.2
  • 41
    • 10044294996 scopus 로고    scopus 로고
    • Optimization of multiple frequency sonochemical reactors
    • Prabhu A., Gogate P.R., Pandit A.B. Optimization of multiple frequency sonochemical reactors. Chem. Eng. Sci. 2004, 59:4991-4998.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 4991-4998
    • Prabhu, A.1    Gogate, P.R.2    Pandit, A.B.3
  • 42
    • 0001656503 scopus 로고
    • Local investigation of some ultrasonic devices by means of a thermal sensor
    • Romdhane M., Gourdon C., Casamatta G. Local investigation of some ultrasonic devices by means of a thermal sensor. Ultrasonics 1995, 33:221-227.
    • (1995) Ultrasonics , vol.33 , pp. 221-227
    • Romdhane, M.1    Gourdon, C.2    Casamatta, G.3
  • 43
    • 4944225489 scopus 로고    scopus 로고
    • Characterization of a 20kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods
    • Saez V., Frýas-Ferrer A., Iniesta J., Gonzalez-Garcý J., Aldaz A., Riera E. Characterization of a 20kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason. Sonochem. 2005, 12:59-65.
    • (2005) Ultrason. Sonochem. , vol.12 , pp. 59-65
    • Saez, V.1    Frýas-Ferrer, A.2    Iniesta, J.3    Gonzalez-Garcý, J.4    Aldaz, A.5    Riera, E.6
  • 44
    • 0041589456 scopus 로고    scopus 로고
    • On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors
    • Servant G., Laborde J.L., Hita A., Caltagirone J.P., Gerard A. On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrason. Sonochem. 2003, 10:347-355.
    • (2003) Ultrason. Sonochem. , vol.10 , pp. 347-355
    • Servant, G.1    Laborde, J.L.2    Hita, A.3    Caltagirone, J.P.4    Gerard, A.5
  • 45
    • 0031249640 scopus 로고    scopus 로고
    • Sonochemical reactions at 640kHz using an efficient reactor: oxidation of potassium iodide
    • Seymour J.D., Wallace H.C., Gupta R.B. Sonochemical reactions at 640kHz using an efficient reactor: oxidation of potassium iodide. Ultrason. Sonochem. 1997, 4:289-293.
    • (1997) Ultrason. Sonochem. , vol.4 , pp. 289-293
    • Seymour, J.D.1    Wallace, H.C.2    Gupta, R.B.3
  • 46
    • 60949113245 scopus 로고    scopus 로고
    • Investigation of acoustic cavitation energy in a large-scale sonoreactor
    • Son Y., Lim M., Khim J. Investigation of acoustic cavitation energy in a large-scale sonoreactor. Ultrason. Sonochem. 2009, 16:552-556.
    • (2009) Ultrason. Sonochem. , vol.16 , pp. 552-556
    • Son, Y.1    Lim, M.2    Khim, J.3
  • 48
    • 0037902592 scopus 로고
    • Sonochemistry
    • Suslick K.S. Sonochemistry. Science 1990, 247:1439-1445.
    • (1990) Science , vol.247 , pp. 1439-1445
    • Suslick, K.S.1
  • 49
    • 74249111384 scopus 로고    scopus 로고
    • Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters
    • Sutkar V.S., Gogate P.R. Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters. Chem. Eng. J. 2009, 155:26-36.
    • (2009) Chem. Eng. J. , vol.155 , pp. 26-36
    • Sutkar, V.S.1    Gogate, P.R.2
  • 50
    • 77949275130 scopus 로고    scopus 로고
    • Theoretical prediction of cavitational activity distribution in sonochemical reactors
    • Sutkar V.S., Gogate P.R., Csoka L. Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chem. Eng. J. 2010, 158:290-295.
    • (2010) Chem. Eng. J. , vol.158 , pp. 290-295
    • Sutkar, V.S.1    Gogate, P.R.2    Csoka, L.3
  • 51
    • 0001251159 scopus 로고    scopus 로고
    • Sonochemical destruction of dichloromethane and o-dichlorobenzene in aqueous solution using a nearfield acoustic processor
    • Thoma G., Swofford J., Popov V., Som M. Sonochemical destruction of dichloromethane and o-dichlorobenzene in aqueous solution using a nearfield acoustic processor. Adv. Environ. Res. 1997, 1:178-193.
    • (1997) Adv. Environ. Res. , vol.1 , pp. 178-193
    • Thoma, G.1    Swofford, J.2    Popov, V.3    Som, M.4
  • 52
    • 0034975075 scopus 로고    scopus 로고
    • An overview of the ultrasonically assisted extraction of bioactive principles from herbs
    • Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8:303-313.
    • (2001) Ultrason. Sonochem. , vol.8 , pp. 303-313
    • Vinatoru, M.1
  • 53
    • 0030817473 scopus 로고    scopus 로고
    • Ultrasonically enhanced corrosion of 304L stainless steel II: the effect of frequency, acoustic power and horn to specimen distance
    • Whillock G.O.H., Harvey B.F. Ultrasonically enhanced corrosion of 304L stainless steel II: the effect of frequency, acoustic power and horn to specimen distance. Ultrason. Sonochem. 1997, 4:33-38.
    • (1997) Ultrason. Sonochem. , vol.4 , pp. 33-38
    • Whillock, G.O.H.1    Harvey, B.F.2
  • 55
    • 0003817720 scopus 로고
    • McGraw Hill, London, UK
    • Young F.R. Cavitation 1989, McGraw Hill, London, UK.
    • (1989) Cavitation
    • Young, F.R.1
  • 56
    • 33745699164 scopus 로고    scopus 로고
    • The preparation of ε-caprolactone in airlift loop sonochemical reactor
    • Zhang P., Yang M., Lu X., Han P. The preparation of ε-caprolactone in airlift loop sonochemical reactor. Chem. Eng. J. 2006, 121:59-63.
    • (2006) Chem. Eng. J. , vol.121 , pp. 59-63
    • Zhang, P.1    Yang, M.2    Lu, X.3    Han, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.