메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S92-S102

A systematic comparison of feature space effects on disease classifier performance for phenotype identification of five diseases

Author keywords

Classification; Natural language processing; Phenotyping

Indexed keywords

BIOINFORMATICS; COMPUTATIONAL LINGUISTICS; COMPUTER AIDED DESIGN; DATA MINING; LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; SUPPORT VECTOR MACHINES; VECTOR SPACES;

EID: 84940703244     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.07.016     Document Type: Article
Times cited : (21)

References (40)
  • 2
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson A.R., Lang F.-M. An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 2010, 17(3):229-236. 10.1136/jamia.2009.002733.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.-M.2
  • 4
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): integrating biomedical terminology
    • Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl. Acids Res. 2004, 32(SI):D267-D270. 10.1093/nar/gkh061.
    • (2004) Nucl. Acids Res. , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 5
    • 48349143030 scopus 로고    scopus 로고
    • Biomedical ontologies in action: role in knowledge management, data integration and decision support
    • Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearbook Med. Inform. 2008, 67-79.
    • (2008) Yearbook Med. Inform. , pp. 67-79
    • Bodenreider, O.1
  • 6
    • 84874213343 scopus 로고    scopus 로고
    • Naïve electronic health record phenotype identification for rheumatoid arthritis
    • Carroll R.J., Eyler A.E., Denny J.C. Naïve electronic health record phenotype identification for rheumatoid arthritis. AMIA Ann. Symp. Proc. 2011, 2011:189-196.
    • (2011) AMIA Ann. Symp. Proc. , vol.2011 , pp. 189-196
    • Carroll, R.J.1    Eyler, A.E.2    Denny, J.C.3
  • 7
    • 84863554305 scopus 로고    scopus 로고
    • Portability of an algorithm to identify rheumatoid arthritis in electronic health records
    • Carroll R.J., Thompson W.K., Eyler A.E., Mandelin A.M., Cai T., Zink R.M., et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. J. Am. Med. Inform. Assoc.: JAMIA 2012, 19(e1):e162-e169. 10.1136/amiajnl-2011-000583.
    • (2012) J. Am. Med. Inform. Assoc.: JAMIA , vol.19 , Issue.e1 , pp. e162-e169
    • Carroll, R.J.1    Thompson, W.K.2    Eyler, A.E.3    Mandelin, A.M.4    Cai, T.5    Zink, R.M.6
  • 8
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27:1-27:27
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intel. Syst. Technol. 2011, 2(3):27:1-27:27. 10.1145/1961189.1961199.
    • (2011) ACM Trans. Intel. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 9
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman W., Bridewell W., Hanbury P., Cooper G., Buchanan B. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 2001, 34(5):301-310. 10.1006/jbin.2001.1029.
    • (2001) J. Biomed. Inform. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.4    Buchanan, B.5
  • 10
    • 84888200992 scopus 로고    scopus 로고
    • Applying active learning to high-throughput phenotyping algorithms for electronic health records data
    • Chen Y., Carroll R.J., Hinz E.R.M., Shah A., Eyler A.E., Denny J.C., Xu H. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. J. Am. Med. Inform. Assoc.: JAMIA 2013, 20(e2):e253-e259. 10.1136/amiajnl-2013-001945.
    • (2013) J. Am. Med. Inform. Assoc.: JAMIA , vol.20 , Issue.e2 , pp. e253-e259
    • Chen, Y.1    Carroll, R.J.2    Hinz, E.R.M.3    Shah, A.4    Eyler, A.E.5    Denny, J.C.6    Xu, H.7
  • 13
    • 55249087535 scopus 로고
    • Perceived usefulness, perceived ease of use, and user acceptance of information technology
    • Davis F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quart. 1989, 319-340.
    • (1989) MIS Quart. , pp. 319-340
    • Davis, F.D.1
  • 14
    • 84872022133 scopus 로고    scopus 로고
    • Mining electronic health records in the genomics era
    • (Chapter 13)
    • Denny J.C. Mining electronic health records in the genomics era. PLoS Comput. Biol. 2012, 8(12). (Chapter 13). 10.1371/journal.pcbi.1002823.
    • (2012) PLoS Comput. Biol. , vol.8 , Issue.12
    • Denny, J.C.1
  • 17
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1-3):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak G., Albers D.J. Next-generation phenotyping of electronic health records. J. Am. Med. Inform. Assoc. 2013, 20(1):117-121. 10.1136/amiajnl-2012-001145.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.1 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 22
    • 84890543419 scopus 로고    scopus 로고
    • Practical implementation of an existing smoking detection pipeline and reduced support vector machine training corpus requirements
    • Khor R., Yip W.-K., Bressel M., Rose W., Duchesne G., Foroudi F. Practical implementation of an existing smoking detection pipeline and reduced support vector machine training corpus requirements. J. Am. Med. Inform. Assoc.: JAMIA 2013, 21(1):27-30. 10.1136/amiajnl-2013-002090.
    • (2013) J. Am. Med. Inform. Assoc.: JAMIA , vol.21 , Issue.1 , pp. 27-30
    • Khor, R.1    Yip, W.-K.2    Bressel, M.3    Rose, W.4    Duchesne, G.5    Foroudi, F.6
  • 27
    • 84906310384 scopus 로고    scopus 로고
    • N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit
    • Marafino B.J., Davies J.M., Bardach N.S., Dean M.L., Dudley R.A. N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit. J. Am. Med. Inform. Assoc. 2014, 21(5):871-875. 10.1136/amiajnl-2014-002694.
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , Issue.5 , pp. 871-875
    • Marafino, B.J.1    Davies, J.M.2    Bardach, N.S.3    Dean, M.L.4    Dudley, R.A.5
  • 28
    • 79251581866 scopus 로고    scopus 로고
    • The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies
    • 13-13
    • McCarty C.A., Chisholm R.L., Chute C.G., Kullo I.J., Jarvik G.P., Larson E.B., et al. The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genom. 2011, 4. 13-13. 10.1186/1755-8794-4-13.
    • (2011) BMC Med. Genom. , vol.4
    • McCarty, C.A.1    Chisholm, R.L.2    Chute, C.G.3    Kullo, I.J.4    Jarvik, G.P.5    Larson, E.B.6
  • 31
    • 84890479944 scopus 로고    scopus 로고
    • Electronic health records-driven phenotyping: challenges, recent advances, and perspectives
    • Pathak J., Kho A.N., Denny J.C. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J. Am. Med. Inform. Assoc.: JAMIA 2013, 20(e2):e206-e211. 10.1136/amiajnl-2013-002428.
    • (2013) J. Am. Med. Inform. Assoc.: JAMIA , vol.20 , Issue.e2 , pp. e206-e211
    • Pathak, J.1    Kho, A.N.2    Denny, J.C.3
  • 32
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 35
    • 84948823441 scopus 로고    scopus 로고
    • Practical applications for NLP in clinical research: the 2014 i2b2/UTHealth shared tasks
    • (i2b2 NLP Proceedings 2014). J. Biomed. Inform. (2015)
    • Stubbs A., Kotfila C., Hua X., Uzuner Ö. Practical applications for NLP in clinical research: the 2014 i2b2/UTHealth shared tasks. J. Biomed. Inform. 2015, (i2b2 NLP Proceedings 2014). J. Biomed. Inform. 58S (2015) S1-S5.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S1-S5
    • Stubbs, A.1    Kotfila, C.2    Hua, X.3    Uzuner, Ö.4
  • 36
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • (i2b2 NLP Proceedings 2014). J. Biomed. Inform. (2015)
    • Stubbs A., Uzuner Ö. Annotating risk factors for heart disease in clinical narratives for diabetic patients. J. Biomed. Inform. 2015, (i2b2 NLP Proceedings 2014). J. Biomed. Inform. 58S (2015) S78-S91.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 37
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J. Am. Med. Inform. Assoc. 2009, 16(4):561-570. 10.1197/jamia.M3115.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , Issue.4 , pp. 561-570
    • Uzuner, Ö.1
  • 38
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner Ö., Luo Y., Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J. Am. Med. Inform. Assoc. 2007, 14(5):550-563. 10.1197/jamia.M2444.
    • (2007) J. Am. Med. Inform. Assoc. , vol.14 , Issue.5 , pp. 550-563
    • Uzuner, Ö.1    Luo, Y.2    Szolovits, P.3
  • 39
    • 84983036317 scopus 로고    scopus 로고
    • A high throughput semantic concept frequency based approach for patient identification: a case study using type 2 diabetes mellitus clinical notes
    • Wei W.-Q., Tao C., Jiang G., Chute C.G. A high throughput semantic concept frequency based approach for patient identification: a case study using type 2 diabetes mellitus clinical notes. AMIA Ann. Symp. Proc. 2010, 2010:857-861.
    • (2010) AMIA Ann. Symp. Proc. , vol.2010 , pp. 857-861
    • Wei, W.-Q.1    Tao, C.2    Jiang, G.3    Chute, C.G.4
  • 40
    • 84882772479 scopus 로고    scopus 로고
    • Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions
    • Wright A., McCoy A.B., Henkin S., Kale A., Sittig D.F. Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions. J. Am. Med. Inform. Assoc. 2013, 20(5):887-890. 10.1136/amiajnl-2012-001576.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.5 , pp. 887-890
    • Wright, A.1    McCoy, A.B.2    Henkin, S.3    Kale, A.4    Sittig, D.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.