메뉴 건너뛰기




Volumn 107, Issue 9, 2015, Pages

Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

Author keywords

[No Author keywords available]

Indexed keywords

ELECTROMECHANICAL COUPLING; NANOCANTILEVERS; NATURAL FREQUENCIES; PIEZOELECTRICITY; STRESS CONCENTRATION;

EID: 84940702775     PISSN: 00036951     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4929844     Document Type: Article
Times cited : (62)

References (33)
  • 1
    • 33750603754 scopus 로고    scopus 로고
    • Analysis of power output for piezoelectric energy harvesting systems
    • Y. Shu and I. Lien, " Analysis of power output for piezoelectric energy harvesting systems," Smart Mater. Struct. 15 (6), 1499 (2006). 10.1088/0964-1726/15/6/001
    • (2006) Smart Mater. Struct. , vol.15 , Issue.6 , pp. 1499
    • Shu, Y.1    Lien, I.2
  • 2
    • 27144453812 scopus 로고    scopus 로고
    • Comparison of piezoelectric energy harvesting devices for recharging batteries
    • H. A. Sodano, D. J. Inman, and G. Park, " Comparison of piezoelectric energy harvesting devices for recharging batteries," J. Intell. Mater. Syst. Struct. 16 (10), 799-807 (2005). 10.1177/1045389X05056681
    • (2005) J. Intell. Mater. Syst. Struct. , vol.16 , Issue.10 , pp. 799-807
    • Sodano, H.A.1    Inman, D.J.2    Park, G.3
  • 3
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, " Energy harvesting from human and machine motion for wireless electronic devices," Proc. IEEE 96 (9), 1457-1486 (2008). 10.1109/JPROC.2008.927494
    • (2008) Proc. IEEE , vol.96 , Issue.9 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.S.4    Green, T.C.5
  • 4
    • 33846077160 scopus 로고    scopus 로고
    • Energy harvesting vibration sources for microsystems applications
    • S. P. Beeby, M. J. Tudor, and N. M. White, " Energy harvesting vibration sources for microsystems applications," Meas. Sci. Technol. 17 (12), R175 (2006). 10.1088/0957-0233/17/12/R01
    • (2006) Meas. Sci. Technol. , vol.17 , Issue.12 , pp. R175
    • Beeby, S.P.1    Tudor, M.J.2    White, N.M.3
  • 6
    • 84865848454 scopus 로고    scopus 로고
    • A nonlinear piezoelectric energy harvester with magnetic oscillator
    • L. Tang and Y. Yang, " A nonlinear piezoelectric energy harvester with magnetic oscillator," Appl. Phys. Lett. 101 (9), 094102 (2012). 10.1063/1.4748794
    • (2012) Appl. Phys. Lett. , vol.101 , Issue.9
    • Tang, L.1    Yang, Y.2
  • 7
    • 84856427647 scopus 로고    scopus 로고
    • Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
    • M. A. Karami and D. J. Inman, " Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters," Appl. Phys. Lett. 100 (4), 042901 (2012). 10.1063/1.3679102
    • (2012) Appl. Phys. Lett. , vol.100 , Issue.4
    • Karami, M.A.1    Inman, D.J.2
  • 8
    • 78650924737 scopus 로고    scopus 로고
    • Toward broadband vibration-based energy harvesting
    • L. Tang, Y. Yang, and C. K. Soh, " Toward broadband vibration-based energy harvesting," J. Intell. Mater. Syst. Struct. 21 (18), 1867-1897 (2010). 10.1177/1045389X10390249
    • (2010) J. Intell. Mater. Syst. Struct. , vol.21 , Issue.18 , pp. 1867-1897
    • Tang, L.1    Yang, Y.2    Soh, C.K.3
  • 9
    • 84923083332 scopus 로고    scopus 로고
    • Comparative modeling of low-frequency piezomagnetoelastic energy harvesters
    • A. Abdelkefi and N. Barsallo, " Comparative modeling of low-frequency piezomagnetoelastic energy harvesters," J. Intell. Mater. Syst. Struct. 25 (14), 1771-1785 (2014). 10.1177/1045389X14523860
    • (2014) J. Intell. Mater. Syst. Struct. , vol.25 , Issue.14 , pp. 1771-1785
    • Abdelkefi, A.1    Barsallo, N.2
  • 10
    • 79551645122 scopus 로고    scopus 로고
    • Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters
    • R. Masana and M. F. Daqaq, " Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters," J. Vib. Acoust. 133 (1), 011007 (2011). 10.1115/1.4002786
    • (2011) J. Vib. Acoust. , vol.133 , Issue.1
    • Masana, R.1    Daqaq, M.F.2
  • 11
    • 84863230318 scopus 로고    scopus 로고
    • Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers
    • H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, " Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers," Smart Mater. Struct. 21 (3), 035005 (2012). 10.1088/0964-1726/21/3/035005
    • (2012) Smart Mater. Struct. , vol.21 , Issue.3
    • Liu, H.1    Lee, C.2    Kobayashi, T.3    Tay, C.J.4    Quan, C.5
  • 12
    • 84867332079 scopus 로고    scopus 로고
    • Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper
    • H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, " Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper," Sens. Actuators, A 186, 242-248 (2012). 10.1016/j.sna.2012.01.033
    • (2012) Sens. Actuators, A , vol.186 , pp. 242-248
    • Liu, H.1    Lee, C.2    Kobayashi, T.3    Tay, C.J.4    Quan, C.5
  • 13
    • 58149344956 scopus 로고    scopus 로고
    • Characterization of different beam shapes for piezoelectric energy harvesting
    • F. Goldschmidtboeing and P. Woias, " Characterization of different beam shapes for piezoelectric energy harvesting," J. Micromech. Microeng. 18 (10), 104013 (2008). 10.1088/0960-1317/18/10/104013
    • (2008) J. Micromech. Microeng. , vol.18 , Issue.10
    • Goldschmidtboeing, F.1    Woias, P.2
  • 14
    • 84891123022 scopus 로고    scopus 로고
    • Design and performance of variable-shaped piezoelectric energy harvesters
    • S. Ben Ayed, A. Abdelkefi, F. Najar, and M. R. Hajj, " Design and performance of variable-shaped piezoelectric energy harvesters," J. Intell. Mater. Syst. Struct. 25 (2), 174-186 (2014). 10.1177/1045389X13489365
    • (2014) J. Intell. Mater. Syst. Struct. , vol.25 , Issue.2 , pp. 174-186
    • Ben Ayed, S.1    Abdelkefi, A.2    Najar, F.3    Hajj, M.R.4
  • 15
    • 77952425940 scopus 로고    scopus 로고
    • Vibration energy scavenging via piezoelectric bimorphs of optimized shapes
    • D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa, " Vibration energy scavenging via piezoelectric bimorphs of optimized shapes," Microsyst. Technol. 16 (5), 657-668 (2010). 10.1007/s00542-009-1000-5
    • (2010) Microsyst. Technol. , vol.16 , Issue.5 , pp. 657-668
    • Benasciutti, D.1    Moro, L.2    Zelenika, S.3    Brusa, E.4
  • 16
    • 84937042818 scopus 로고    scopus 로고
    • Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters
    • N. Sharpes, A. Abdelkefi, and S. Priya, " Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters," Energy Harvesting Syst. 1 (3-4), 209-216 (2014). 10.1515/ehs-2014-0007
    • (2014) Energy Harvesting Syst. , vol.1 , Issue.3-4 , pp. 209-216
    • Sharpes, N.1    Abdelkefi, A.2    Priya, S.3
  • 17
    • 79953305302 scopus 로고    scopus 로고
    • Electromechanical modeling of the low-frequency zigzag micro-energy harvester
    • M. A. Karami and D. J. Inman, " Electromechanical modeling of the low-frequency zigzag micro-energy harvester," J. Intell. Mater. Syst. Struct. 22 (3), 271-282 (2011). 10.1177/1045389X11398164
    • (2011) J. Intell. Mater. Syst. Struct. , vol.22 , Issue.3 , pp. 271-282
    • Karami, M.A.1    Inman, D.J.2
  • 20
    • 84858447240 scopus 로고    scopus 로고
    • Parametric study of zigzag microstructure for vibrational energy harvesting
    • A. M. Karami and D. J. Inman, " Parametric study of zigzag microstructure for vibrational energy harvesting," J. Microelectromech. Syst. 21 (1), 145-160 (2012). 10.1109/JMEMS.2011.2171321
    • (2012) J. Microelectromech. Syst. , vol.21 , Issue.1 , pp. 145-160
    • Karami, A.M.1    Inman, D.J.2
  • 21
    • 84870053709 scopus 로고    scopus 로고
    • Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass
    • D. F. Berdy, B. Jung, J. F. Rhoads, and D. Peroulis, " Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass," Sens. Actuators, A 188, 148-157 (2012). 10.1016/j.sna.2012.01.043
    • (2012) Sens. Actuators, A , vol.188 , pp. 148-157
    • Berdy, D.F.1    Jung, B.2    Rhoads, J.F.3    Peroulis, D.4
  • 22
    • 84899875555 scopus 로고    scopus 로고
    • A wideband vibration energy harvester based on a folded asymmetric gapped cantilever
    • Y. Hu and Y. Xu, " A wideband vibration energy harvester based on a folded asymmetric gapped cantilever," Appl. Phys. Lett. 104 (5), 053902 (2014). 10.1063/1.4863923
    • (2014) Appl. Phys. Lett. , vol.104 , Issue.5
    • Hu, Y.1    Xu, Y.2
  • 23
    • 84872732801 scopus 로고    scopus 로고
    • A novel two-degrees-of-freedom piezoelectric energy harvester
    • H. Wu, L. Tang, Y. Yang, and C. K. Soh, " A novel two-degrees-of-freedom piezoelectric energy harvester," J. Intell. Mater. Syst. Struct. 24 (3), 357-368 (2013). 10.1177/1045389X12457254
    • (2013) J. Intell. Mater. Syst. Struct. , vol.24 , Issue.3 , pp. 357-368
    • Wu, H.1    Tang, L.2    Yang, Y.3    Soh, C.K.4
  • 26
    • 34347243911 scopus 로고    scopus 로고
    • A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit
    • H. Hu, H. Xue, and Y. Hu, " A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (6), 1177-1187 (2007). 10.1109/TUFFC.2007.371
    • (2007) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.54 , Issue.6 , pp. 1177-1187
    • Hu, H.1    Xue, H.2    Hu, Y.3
  • 28
    • 85126307804 scopus 로고    scopus 로고
    • Vibration modeling of arc-based cantilevers for energy harvesting applications
    • D. J. Apo, M. Sanghadasa, and S. Priya, " Vibration modeling of arc-based cantilevers for energy harvesting applications," Energy Harvesting Syst. 1 (1-2), 57-68 (2014). 10.1515/ehs-2013-0002
    • (2014) Energy Harvesting Syst. , vol.1 , Issue.1-2 , pp. 57-68
    • Apo, D.J.1    Sanghadasa, M.2    Priya, S.3
  • 29
    • 84940679468 scopus 로고    scopus 로고
    • D. J. Apo, " Low Frequency Microscale Energy Harvesting," Ph.D. dissertation (Virginia Tech, 2014)
    • D. J. Apo, " Low Frequency Microscale Energy Harvesting," Ph.D. dissertation (Virginia Tech, 2014), available at https://vtechworks.lib.vt.edu//handle/10919/49773.
  • 30
    • 84857291859 scopus 로고    scopus 로고
    • Charge redistribution in piezoelectric energy harvesters
    • M. Stewart, P. M. Weaver, and M. Cain, " Charge redistribution in piezoelectric energy harvesters," Appl. Phys. Lett. 100 (7), 073901 (2012). 10.1063/1.3685701
    • (2012) Appl. Phys. Lett. , vol.100 , Issue.7
    • Stewart, M.1    Weaver, P.M.2    Cain, M.3
  • 31
    • 77955212882 scopus 로고    scopus 로고
    • Sensor shape design for piezoelectric cantilever beams to harvest vibration energy
    • M. I. Friswell and S. Adhikari, " Sensor shape design for piezoelectric cantilever beams to harvest vibration energy," J. Appl. Phys. 108 (1), 014901 (2010). 10.1063/1.3457330
    • (2010) J. Appl. Phys. , vol.108 , Issue.1
    • Friswell, M.I.1    Adhikari, S.2
  • 32
    • 80155189575 scopus 로고    scopus 로고
    • An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations
    • A. Abdelkefi, F. Najar, A. Nayfeh, and S. B. Ayed, " An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations," Smart Mater. Struct. 20 (11), 115007 (2011). 10.1088/0964-1726/20/11/115007
    • (2011) Smart Mater. Struct. , vol.20 , Issue.11
    • Abdelkefi, A.1    Najar, F.2    Nayfeh, A.3    Ayed, S.B.4
  • 33
    • 84940679469 scopus 로고    scopus 로고
    • See supplementary material at E-APPLAB-107-064535 for details about test specimen fabrication, measurement of damping ratio and short-open frequencies, finite element analysis simulations, and analytical model derivation.
    • See supplementary material at http://dx.doi.org/10.1063/1.4929844 E-APPLAB-107-064535 for details about test specimen fabrication, measurement of damping ratio and short-open frequencies, finite element analysis simulations, and analytical model derivation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.