메뉴 건너뛰기




Volumn 2015-April, Issue , 2015, Pages 3-7

Flexible selective parallel algorithms for big data optimization

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA;

EID: 84940487684     PISSN: 10586393     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACSSC.2014.7094384     Document Type: Conference Paper
Times cited : (5)

References (32)
  • 2
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • March
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Mathematical Programming, vol. 117, no. 1-2, pp. 387-423, March 2009
    • (2009) Mathematical Programming , vol.117 , Issue.1-2 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 3
    • 0032222093 scopus 로고    scopus 로고
    • Cost approximation: A unified framework of descent algorithms for nonlinear programs
    • M. Patriksson, Cost approximation: a unified framework of descent algorithms for nonlinear programs, SIAM Journal on Optimization, vol. 8, no. 2, pp. 561-582, 1998
    • (1998) SIAM Journal on Optimization , vol.8 , Issue.2 , pp. 561-582
    • Patriksson, M.1
  • 5
    • 84940488483 scopus 로고    scopus 로고
    • HyFLEXA: A hybrid random/deterministic parallel algorithm for nonconvex big data optimization
    • (to appear)
    • F. Facchinei, G. Scutari, and S. Sagratella, HyFLEXA: A hybrid random/deterministic parallel algorithm for nonconvex big data optimization, IEEE Trans. on Signal Process., (to appear) 2014. Available: http://arxiv.org/abs/1402.5521
    • (2014) IEEE Trans. on Signal Process
    • Facchinei, F.1    Scutari, G.2    Sagratella, S.3
  • 9
    • 84874622647 scopus 로고    scopus 로고
    • Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC
    • March
    • I. Necoara and D. Clipici, Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC, Journal of Process Control, vol. 23, no. 3, pp. 243-253, March 2013
    • (2013) Journal of Process Control , vol.23 , Issue.3 , pp. 243-253
    • Necoara, I.1    Clipici, D.2
  • 10
    • 84925443414 scopus 로고    scopus 로고
    • Distributed random coordinate descent method for composite minimization
    • Nov
    • Distributed random coordinate descent method for composite minimization, Technical Report, pp. 1-41, Nov. 2013. [Online]. Available: http://arxiv-web.arxiv.org/abs/1312.5302
    • (2013) Technical Report , pp. 1-41
    • Necoara, I.1    Clipici, D.2
  • 11
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • August
    • Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming, vol. 140, pp. 125-161, August 2013
    • (2013) Mathematical Programming , vol.140 , pp. 125-161
    • Nesterov, Y.1
  • 12
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Journal on Optimization, vol. 22, no. 2, pp. 341-362, 2012
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.2 , pp. 341-362
    • Nesterov, Y.1
  • 13
    • 84901286794 scopus 로고    scopus 로고
    • Parallel and distributed sparse optimization
    • Systems and Computers, Pacific Grove, CA, USA
    • Z. Peng, M. Yan, and W. Yin, Parallel and distributed sparse optimization, in Proc. of the 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2013, pp. 659-646
    • (2013) Proc. of the 2013 Asilomar Conference on Signals , pp. 659-646
    • Peng, Z.1    Yan, M.2    Yin, W.3
  • 15
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Jan
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, Jan. 2009
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 16
  • 18
    • 84894444593 scopus 로고    scopus 로고
    • A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints
    • I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Computational Optimization and Applications, vol. 57, no. 2, pp. 307-337, 2014
    • (2014) Computational Optimization and Applications , vol.57 , Issue.2 , pp. 307-337
    • Necoara, I.1    Patrascu, A.2
  • 19
    • 84943588688 scopus 로고    scopus 로고
    • Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization
    • Feb
    • A. Patrascu and I.Necoara, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, J. of Global Optimization, pp. 1-23, Feb. 2014
    • (2014) J. of Global Optimization , pp. 1-23
    • Patrascu, A.1    Necoara, I.2
  • 20
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function
    • P. Richtarik and M. Takač, Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function, Mathematical Programming, vol. 144, no. 1-2, pp. 1-38, 2014
    • (2014) Mathematical Programming , vol.144 , Issue.1-2 , pp. 1-38
    • Richtarik, P.1    Takač, M.2
  • 23
    • 84864920041 scopus 로고    scopus 로고
    • An improved glmnet for -1-regularized logistic regression
    • G.-X. Yuan, C.-H. Ho, and C.-J. Lin, An improved glmnet for -1-regularized logistic regression, The Journal of Machine Learning Research, vol. 13, no. 1, pp. 1999-2030, 2012
    • (2012) The Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 1999-2030
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3
  • 24
    • 84893409470 scopus 로고    scopus 로고
    • Decomposition by Partial linearization: Parallel optimization of multi-agent systems
    • Feb
    • G. Scutari, F. Facchinei, P. Song, D. Palomar, and J.-S. Pang, Decomposition by Partial linearization: Parallel optimization of multi-agent systems, IEEE Trans. Signal Process., vol. 62, pp. 641-656, Feb. 2014
    • (2014) IEEE Trans. Signal Process , vol.62 , pp. 641-656
    • Scutari, G.1    Facchinei, F.2    Song, P.3    Palomar, D.4    Pang, J.-S.5
  • 29
    • 84934290103 scopus 로고    scopus 로고
    • Hybrid random/deterministic parallel algorithms for nonconvex big data optimization
    • (submitted)
    • A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari, Hybrid random/deterministic parallel algorithms for nonconvex big data optimization, IEEE Trans. on Signal Process., (submitted), 2014. Available: http://arxiv.org/abs/1407.4504
    • (2014) IEEE Trans. on Signal Process
    • Daneshmand, A.1    Facchinei, F.2    Kungurtsev, V.3    Scutari, G.4
  • 31
    • 84934272754 scopus 로고    scopus 로고
    • Numerical comparison of hybrid random/ deterministic parallel algorithms for nonconvex big data optimization
    • Tech. Rep., August
    • A. Daneshmand, Numerical Comparison of Hybrid Random/ Deterministic Parallel Algorithms for nonconvex big data Optimization, Dept. of Elect. Eng., SUNY Buffalo, Tech. Rep., August 2014. [Online]. Available: http://www.eng.buffalo.edu/amirdane/ DaneshmandTechRepNumCompAug14.pdf
    • (2014) Dept. of Elect. Eng., SUNY Buffalo
    • Daneshmand, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.