메뉴 건너뛰기




Volumn 33, Issue 4, 2015, Pages 214-220

Source-separated urine opens golden opportunities for microbial electrochemical technologies

Author keywords

Microbial electrochemical system; Microbial electrolysis cell; Microbial fuel cell; Nutrient recovery; Source separated urine; Water energy nutrients nexus

Indexed keywords

FOOD SUPPLY; MICROBIAL FUEL CELLS; MOLECULAR BIOLOGY; NUTRIENTS; RECOVERY; REGENERATIVE FUEL CELLS; SEPARATION;

EID: 84940364621     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.01.007     Document Type: Review
Times cited : (167)

References (60)
  • 2
    • 67349203641 scopus 로고    scopus 로고
    • The story of phosphorus: global food security and food for thought
    • Cordell D., et al. The story of phosphorus: global food security and food for thought. Global Environ. Change Hum. Policy Dimens. 2009, 19:292-305.
    • (2009) Global Environ. Change Hum. Policy Dimens. , vol.19 , pp. 292-305
    • Cordell, D.1
  • 4
    • 84856139797 scopus 로고    scopus 로고
    • Climate policy: oil's tipping point has passed
    • Murray J., King D. Climate policy: oil's tipping point has passed. Nature 2012, 481:433-435.
    • (2012) Nature , vol.481 , pp. 433-435
    • Murray, J.1    King, D.2
  • 5
    • 84865012935 scopus 로고    scopus 로고
    • Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security
    • Cordell D., White S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3:2027-2049.
    • (2011) Sustainability , vol.3 , pp. 2027-2049
    • Cordell, D.1    White, S.2
  • 6
    • 84881257461 scopus 로고    scopus 로고
    • Sustainable use of phosphorus: a finite resource
    • Scholz R.W., et al. Sustainable use of phosphorus: a finite resource. Sci. Total Environ. 2013, 461/462:799-803.
    • (2013) Sci. Total Environ. , pp. 799-803
    • Scholz, R.W.1
  • 7
    • 84894290710 scopus 로고    scopus 로고
    • Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity
    • Cordell D., Neset T.S.S. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Global Environ. Change 2014, 24:108-122.
    • (2014) Global Environ. Change , vol.24 , pp. 108-122
    • Cordell, D.1    Neset, T.S.S.2
  • 9
    • 0041966000 scopus 로고    scopus 로고
    • The quest for sustainable nitrogen removal technologies
    • Mulder A. The quest for sustainable nitrogen removal technologies. Water Sci. Technol. 2003, 48:67-75.
    • (2003) Water Sci. Technol. , vol.48 , pp. 67-75
    • Mulder, A.1
  • 11
    • 76749143781 scopus 로고    scopus 로고
    • Food security: the challenge of feeding 9 billion people
    • Godfray H.C.J., et al. Food security: the challenge of feeding 9 billion people. Science 2010, 327:812-818.
    • (2010) Science , vol.327 , pp. 812-818
    • Godfray, H.C.J.1
  • 14
    • 1542406620 scopus 로고    scopus 로고
    • Source separated urine-nutrient and heavy metal content, water saving and faecal contamination
    • Jönsson H., et al. Source separated urine-nutrient and heavy metal content, water saving and faecal contamination. Water Sci. Technol. 1997, 35:145-152.
    • (1997) Water Sci. Technol. , vol.35 , pp. 145-152
    • Jönsson, H.1
  • 16
    • 33748320772 scopus 로고    scopus 로고
    • Treatment processes for source-separated urine
    • Maurer M., et al. Treatment processes for source-separated urine. Water Res. 2006, 40:3151-3166.
    • (2006) Water Res. , vol.40 , pp. 3151-3166
    • Maurer, M.1
  • 17
    • 33846645010 scopus 로고    scopus 로고
    • Fate of major compounds in source-separated urine
    • Udert K.M., et al. Fate of major compounds in source-separated urine. Water Sci. Technol. 2006, 54:413-420.
    • (2006) Water Sci. Technol. , vol.54 , pp. 413-420
    • Udert, K.M.1
  • 19
    • 68649114755 scopus 로고    scopus 로고
    • Maximum use of resources present in domestic 'used water'
    • Verstraete W., et al. Maximum use of resources present in domestic 'used water'. Bioresour. Technol. 2009, 100:5537-5545.
    • (2009) Bioresour. Technol. , vol.100 , pp. 5537-5545
    • Verstraete, W.1
  • 20
    • 26844465537 scopus 로고    scopus 로고
    • Evaluation of separate urine collection and treatment to augment existing wastewater treatment works
    • Wilsenach J.A., et al. Evaluation of separate urine collection and treatment to augment existing wastewater treatment works. Water Sci. Technol. 2005, 52:71-80.
    • (2005) Water Sci. Technol. , vol.52 , pp. 71-80
    • Wilsenach, J.A.1
  • 21
    • 70349629997 scopus 로고    scopus 로고
    • Options for urine treatment in developing countries
    • Pronk W., Koné D. Options for urine treatment in developing countries. Desalination 2009, 248:360-368.
    • (2009) Desalination , vol.248 , pp. 360-368
    • Pronk, W.1    Koné, D.2
  • 22
    • 0034746730 scopus 로고    scopus 로고
    • Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams
    • Münch E.V., Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res. 2001, 35:151-159.
    • (2001) Water Res. , vol.35 , pp. 151-159
    • Münch, E.V.1    Barr, K.2
  • 23
    • 9744227468 scopus 로고    scopus 로고
    • Pilot-scale study of phosphorus recovery through struvite crystallization - examining the process feasibility
    • Adnan A., et al. Pilot-scale study of phosphorus recovery through struvite crystallization - examining the process feasibility. J. Environ. Eng. Sci. 2003, 2:315-324.
    • (2003) J. Environ. Eng. Sci. , vol.2 , pp. 315-324
    • Adnan, A.1
  • 24
    • 33745858318 scopus 로고    scopus 로고
    • An economic evaluation of phosphorus recovery as struvite from digester supernatant
    • Shu L., et al. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 2006, 97:2211-2216.
    • (2006) Bioresour. Technol. , vol.97 , pp. 2211-2216
    • Shu, L.1
  • 25
    • 43849103632 scopus 로고    scopus 로고
    • A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process
    • Pastor L., et al. A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresour. Technol. 2008, 99:6285-6291.
    • (2008) Bioresour. Technol. , vol.99 , pp. 6285-6291
    • Pastor, L.1
  • 26
    • 71149096780 scopus 로고    scopus 로고
    • Phosphorus recovery from wastewater by struvite crystallization: a review
    • Le Corre K.S., et al. Phosphorus recovery from wastewater by struvite crystallization: a review. Crit. Rev. Environ. Sci. Technol. 2009, 39:433-477.
    • (2009) Crit. Rev. Environ. Sci. Technol. , vol.39 , pp. 433-477
    • Le Corre, K.S.1
  • 27
    • 33845569157 scopus 로고    scopus 로고
    • Phosphate and potassium recovery from source separated urine through struvite precipitation
    • Wilsenach J.A., et al. Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res. 2007, 41:458-466.
    • (2007) Water Res. , vol.41 , pp. 458-466
    • Wilsenach, J.A.1
  • 28
    • 83155161042 scopus 로고    scopus 로고
    • Nitrogen and phosphorus recovery from human urine by struvite precipitation and air stripping in vietnam
    • Antonini S., et al. Nitrogen and phosphorus recovery from human urine by struvite precipitation and air stripping in vietnam. CLEAN Soil Air Water 2011, 39:1099-1104.
    • (2011) CLEAN Soil Air Water , vol.39 , pp. 1099-1104
    • Antonini, S.1
  • 29
    • 78650414035 scopus 로고    scopus 로고
    • Low-cost struvite production using source-separated urine in Nepal
    • Etter B., et al. Low-cost struvite production using source-separated urine in Nepal. Water Res. 2011, 45:852-862.
    • (2011) Water Res. , vol.45 , pp. 852-862
    • Etter, B.1
  • 30
    • 84870058499 scopus 로고    scopus 로고
    • Struvite precipitation from urine with electrochemical magnesium dosage
    • Hug A., Udert K.M. Struvite precipitation from urine with electrochemical magnesium dosage. Water Res. 2013, 47:289-299.
    • (2013) Water Res. , vol.47 , pp. 289-299
    • Hug, A.1    Udert, K.M.2
  • 31
    • 84906826768 scopus 로고    scopus 로고
    • An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR)
    • Dai J., et al. An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR). Water Res. 2014, 66:75-84.
    • (2014) Water Res. , vol.66 , pp. 75-84
    • Dai, J.1
  • 32
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D., et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1
  • 33
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan B.E., Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337:686-690.
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 34
    • 84892486205 scopus 로고    scopus 로고
    • Nutrients removal and recovery in bioelectrochemical systems: a review
    • Kelly P.T., He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 2014, 153:351-360.
    • (2014) Bioresour. Technol. , vol.153 , pp. 351-360
    • Kelly, P.T.1    He, Z.2
  • 35
    • 84906687075 scopus 로고    scopus 로고
    • Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements
    • Venkata Mohan S., et al. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable Sust. Energy Rev. 2014, 40:779-797.
    • (2014) Renewable Sust. Energy Rev. , vol.40 , pp. 779-797
    • Venkata Mohan, S.1
  • 36
    • 47049103719 scopus 로고    scopus 로고
    • Towards practical implementation of bioelectrochemical wastewater treatment
    • Rozendal R.A., et al. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26:450-459.
    • (2008) Trends Biotechnol. , vol.26 , pp. 450-459
    • Rozendal, R.A.1
  • 37
    • 79551680458 scopus 로고    scopus 로고
    • Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell
    • Kuntke P., et al. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour. Technol. 2011, 102:4376-4382.
    • (2011) Bioresour. Technol. , vol.102 , pp. 4376-4382
    • Kuntke, P.1
  • 38
    • 82955223434 scopus 로고    scopus 로고
    • Urine utilisation by microbial fuel cells; energy fuel for the future
    • Ieropoulos I., et al. Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys. 2012, 14:94-98.
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 94-98
    • Ieropoulos, I.1
  • 39
    • 84859004454 scopus 로고    scopus 로고
    • Ammonium recovery and energy production from urine by a microbial fuel cell
    • Kuntke P., et al. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012, 46:2627-2636.
    • (2012) Water Res. , vol.46 , pp. 2627-2636
    • Kuntke, P.1
  • 41
    • 84897921751 scopus 로고    scopus 로고
    • Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell
    • Kuntke P., et al. Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell. Int. J. Hydrogen Energy 2014, 39:4771-4778.
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 4771-4778
    • Kuntke, P.1
  • 42
    • 84984904199 scopus 로고    scopus 로고
    • Bioelectrochemical systems for nitrogen removal and recovery from wastewater
    • Rodriguez Arredondo M., et al. Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ. Sci. Water Res. Technol. 2015, 1:22-33.
    • (2015) Environ. Sci. Water Res. Technol. , vol.1 , pp. 22-33
    • Rodriguez Arredondo, M.1
  • 43
    • 0042405010 scopus 로고    scopus 로고
    • Nutrients in urine: energetic aspects of removal and recovery
    • Maurer M., et al. Nutrients in urine: energetic aspects of removal and recovery. Water Sci. Technol. 2003, 48:37-46.
    • (2003) Water Sci. Technol. , vol.48 , pp. 37-46
    • Maurer, M.1
  • 44
    • 84879315632 scopus 로고    scopus 로고
    • Ammonia recycling enables sustainable operation of bioelectrochemical systems
    • Cheng K.Y., et al. Ammonia recycling enables sustainable operation of bioelectrochemical systems. Bioresour. Technol. 2013, 143:25-31.
    • (2013) Bioresour. Technol. , vol.143 , pp. 25-31
    • Cheng, K.Y.1
  • 45
    • 80052736175 scopus 로고    scopus 로고
    • Ammonium as a sustainable proton shuttle in bioelectrochemical systems
    • Cord-Ruwisch R., et al. Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresour. Technol. 2011, 102:9691-9696.
    • (2011) Bioresour. Technol. , vol.102 , pp. 9691-9696
    • Cord-Ruwisch, R.1
  • 46
    • 84856576856 scopus 로고    scopus 로고
    • Phosphate recovery as struvite within a single chamber microbial electrolysis cell
    • Cusick R.D., Logan B.E. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour. Technol. 2012, 107:110-115.
    • (2012) Bioresour. Technol. , vol.107 , pp. 110-115
    • Cusick, R.D.1    Logan, B.E.2
  • 47
    • 84882449265 scopus 로고    scopus 로고
    • Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine
    • Santoro C., et al. Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int. J. Hydrogen Energy 2013, 38:11543-11551.
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 11543-11551
    • Santoro, C.1
  • 48
    • 33645796462 scopus 로고    scopus 로고
    • Electrodialysis for recovering Salts from a urine solution containing micropollutants
    • Pronk W., et al. Electrodialysis for recovering Salts from a urine solution containing micropollutants. Environ. Sci. Tech. 2006, 40:2414-2420.
    • (2006) Environ. Sci. Tech. , vol.40 , pp. 2414-2420
    • Pronk, W.1
  • 49
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • Krieg T., et al. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 2014, 32:645-655.
    • (2014) Trends Biotechnol. , vol.32 , pp. 645-655
    • Krieg, T.1
  • 50
    • 84875263858 scopus 로고    scopus 로고
    • MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions
    • Ledezma P., et al. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresour. Technol. 2013, 134:158-165.
    • (2013) Bioresour. Technol. , vol.134 , pp. 158-165
    • Ledezma, P.1
  • 51
    • 84873051303 scopus 로고    scopus 로고
    • The first self-sustainable microbial fuel cell stack
    • Ledezma P., et al. The first self-sustainable microbial fuel cell stack. Phys. Chem. Chem. Phys. 2013, 15:2278-2281.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 2278-2281
    • Ledezma, P.1
  • 52
    • 84455189012 scopus 로고    scopus 로고
    • Complete nutrient recovery from source-separated urine by nitrification and distillation
    • Udert K.M., Wächter M. Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Res. 2012, 46:453-464.
    • (2012) Water Res. , vol.46 , pp. 453-464
    • Udert, K.M.1    Wächter, M.2
  • 53
    • 84886284383 scopus 로고    scopus 로고
    • Biochemical treatment of biosolids - emerging technologies: pre-treatment methods such as biological processes can improve performance economically
    • Batstone D.J., et al. Biochemical treatment of biosolids - emerging technologies: pre-treatment methods such as biological processes can improve performance economically. Water 2011, 38:90-93.
    • (2011) Water , vol.38 , pp. 90-93
    • Batstone, D.J.1
  • 54
    • 65449164456 scopus 로고    scopus 로고
    • Experiences from MFC pilot plant operation: how to get the technology market-ready?
    • University of Pennsylvania
    • Keller J., Rabaey K. Experiences from MFC pilot plant operation: how to get the technology market-ready?. Microbial Fuel Cells First International Symposium 2008 2008, University of Pennsylvania, pp. 13.
    • (2008) Microbial Fuel Cells First International Symposium 2008 , pp. 13
    • Keller, J.1    Rabaey, K.2
  • 55
    • 33748566549 scopus 로고    scopus 로고
    • Microbial fuel cells: methodology and technology
    • Logan B.E., et al. Microbial fuel cells: methodology and technology. Environ. Sci. Tech. 2006, 40:5181-5192.
    • (2006) Environ. Sci. Tech. , vol.40 , pp. 5181-5192
    • Logan, B.E.1
  • 57
    • 84861911299 scopus 로고    scopus 로고
    • Bioelectrochemical systems: an outlook for practical applications
    • Sleutels T.H.J.A., et al. Bioelectrochemical systems: an outlook for practical applications. Chemsuschem 2012, 5:1012-1019.
    • (2012) Chemsuschem , vol.5 , pp. 1012-1019
    • Sleutels, T.H.J.A.1
  • 58
    • 84940365448 scopus 로고    scopus 로고
    • Rijksuniversiteit Groningen
    • Allers M.A., et al. Atlas van de Lokale Lasten 2014 2014, Rijksuniversiteit Groningen, http://www.coelo.nl/images/rapporten/Rapport_Atlas_algemene_deel_2014.pdf.
    • (2014) Atlas van de Lokale Lasten 2014
    • Allers, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.