-
1
-
-
84878653108
-
General anesthesia and human brain connectivity
-
The process of anesthetic emergence may not simply mirror that of anesthetic induction. The prime candidates are those based on the posterior parietal–cingulate–precuneus region and the nonspecific thalamus
-
• Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2:291–302. The process of anesthetic emergence may not simply mirror that of anesthetic induction. The prime candidates are those based on the posterior parietal–cingulate–precuneus region and the nonspecific thalamus.
-
(2012)
Brain Connect
, vol.2
, pp. 291
-
-
Hudetz, A.G.1
-
2
-
-
0142247467
-
Orexinergic neurons and barbiturate anesthesia
-
COI: 1:CAS:528:DC%2BD3sXot1yru7g%3D, PID: 14580935
-
Kushikata T, Hirota K, Yoshida H, et al. Orexinergic neurons and barbiturate anesthesia. Neuroscience. 2003;121:855–63. DOI: 10.1016/S0306-4522(03)00554-2
-
(2003)
Neuroscience
, vol.121
, pp. 855-863
-
-
Kushikata, T.1
Hirota, K.2
Yoshida, H.3
-
3
-
-
79952248679
-
Effects of orexin-A on propofol anesthesia in rats
-
PID: 21153424
-
Shirasaka T, Yonaha T, Onizuka S, et al. Effects of orexin-A on propofol anesthesia in rats. J Anesth. 2011;25:65–71. DOI: 10.1007/s00540-010-1071-6
-
(2011)
J Anesth
, vol.25
, pp. 65-71
-
-
Shirasaka, T.1
Yonaha, T.2
Onizuka, S.3
-
4
-
-
84866922347
-
Orexin-A facilitates emergence from propofol anesthesia in the rat
-
COI: 1:CAS:528:DC%2BC38Xhtl2rurzO, PID: 22798527
-
Zhang LN, Li ZJ, Tong L, et al. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg. 2012;115:789–96. DOI: 10.1213/ANE.0b013e3182645ea3
-
(2012)
Anesth Analg
, vol.115
, pp. 789-796
-
-
Zhang, L.N.1
Li, Z.J.2
Tong, L.3
-
5
-
-
59649103743
-
Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity
-
COI: 1:CAS:528:DC%2BD1MXitF2jtr0%3D, PID: 19151277
-
Tose R, Kushikata T, Yoshida H, et al. Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity. Anesth Analg. 2009;108:491–5. DOI: 10.1213/ane.0b013e31819000c8
-
(2009)
Anesth Analg
, vol.108
, pp. 491-495
-
-
Tose, R.1
Kushikata, T.2
Yoshida, H.3
-
6
-
-
39549098333
-
An essential role for orexins in emergence from general anesthesia
-
COI: 1:CAS:528:DC%2BD1cXhs1Klsrw%3D, PID: 18195361
-
Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309–14. DOI: 10.1073/pnas.0707146105
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 1309-1314
-
-
Kelz, M.B.1
Sun, Y.2
Chen, J.3
-
7
-
-
79953198223
-
Dissociable network properties of anesthetic state transitions
-
This study used multichannel EEG recordings from adult human volunteers given propofol. Various network parameters of brain connectivity were altered by propofol-induced LOC. Parietal networks play a critical role as targets for general anesthetics
-
• Lee U, Muller M, Noh GJ, et al. Dissociable network properties of anesthetic state transitions. Anesthesiology. 2011;114:872–81. This study used multichannel EEG recordings from adult human volunteers given propofol. Various network parameters of brain connectivity were altered by propofol-induced LOC. Parietal networks play a critical role as targets for general anesthetics.
-
(2011)
Anesthesiology
, vol.114
, pp. 872
-
-
Lee, U.1
Muller, M.2
Noh, G.J.3
-
8
-
-
85140991917
-
-
• Sanders RD, Tononi G, Laureys S, et al. Unresponsiveness not equal unconsciousness. Anesthesiology. 2012;116:946–59. Consciousness, connectedness, and responsiveness should be recognized as different concepts. Sequential activation of consciousness, connectedness to the environment, and responsiveness is an important process for smooth and uneventful emergence from anesthesia.
-
(2012)
-
-
Sanders, R.D.1
Tononi, G.2
Laureys, S.3
-
9
-
-
84894381817
-
Reconfiguration of network hub structure after propofol-induced unconsciousness
-
•• Lee H, Mashour GA, Noh GJ, et al. Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology, 2013;119:1347–1356. Propofol changes the topologic properties of the network hub structure in the brain and reverses the phase relationship between the frontal and parietal regions. This change is closely associated with states of consciousness.
-
(2013)
Anesthesiology
, vol.119
, pp. 1347-1356
-
-
Lee, H.1
Mashour, G.A.2
Noh, G.J.3
-
10
-
-
84883255490
-
Consciousness, anesthesia, and neural synchrony
-
PID: 23503372
-
Mashour GA. Consciousness, anesthesia, and neural synchrony. Anesthesiology. 2013;119:7–9. DOI: 10.1097/ALN.0b013e31828e8974
-
(2013)
Anesthesiology
, vol.119
, pp. 7-9
-
-
Mashour, G.A.1
-
11
-
-
85141001874
-
-
•• Shin J, Mashour GA, Ku S, et al. Subgraph “backbone” analysis of dynamic brain networks during consciousness and anesthesia. PloS One. 2013;8:e70899. General anesthesia significantly alters brain network connectivity. Some typical and common patterns derived from multichannel EEG, defined as “network backbones,” changed rapidly across states of consciousness with various anesthetics.
-
(2013)
-
-
Shin, J.1
Mashour, G.A.2
Ku, S.3
-
12
-
-
85140973535
-
-
• Lewis LD, Weiner VS, Mukamel EA, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2012;109:E3377–86. In propofol-induced LOC, local neuronal networks remain intact but become functionally isolated in time and space.
-
(2012)
-
-
Lewis, L.D.1
Weiner, V.S.2
Mukamel, E.A.3
-
13
-
-
84866245073
-
Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness
-
This functional MRI study in humans with propofol found a breakdown in subcortico-cortical and cortico-cortical connectivity. The degree of the breakdown varied. The decrease in connectivity was pronounced in thalamocortical connections, whereas no changes were found in connectivity within the primary sensory cortices
-
• Schroter MS, Spoormaker VI, Schorer A, et al. Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. J Neurosci. 2012;32:12832–40. This functional MRI study in humans with propofol found a breakdown in subcortico-cortical and cortico-cortical connectivity. The degree of the breakdown varied. The decrease in connectivity was pronounced in thalamocortical connections, whereas no changes were found in connectivity within the primary sensory cortices.
-
(2012)
J Neurosci
, vol.32
, pp. 12832-12840
-
-
Schroter, M.S.1
Spoormaker, V.I.2
Schorer, A.3
-
14
-
-
84880459447
-
Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness
-
COI: 1:CAS:528:DC%2BC3sXhtFWjtrbN, PID: 23825412
-
Vijayan S, Ching S, Purdon PL, et al. Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. J Neurosci. 2013;33:11070–5. DOI: 10.1523/JNEUROSCI.5670-12.2013
-
(2013)
J Neurosci
, vol.33
, pp. 11070-11075
-
-
Vijayan, S.1
Ching, S.2
Purdon, P.L.3
-
15
-
-
84859372207
-
Returning from oblivion: Imaging the neural core of consciousness
-
PET study with humans indicated several brain regions are activated in the consciousness state, but that connectivity fades along with loss of consciousness by anesthetics, and the return of consciousness was not associated with a significant restoration of cortical activation. Arousal-induced activations were mostly localized in deep, phylogenetically old brain structures rather than in the neocortex. These results suggested that the anesthetic recovery process may not simple mirror of induction
-
•• Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32:4935–43. PET study with humans indicated several brain regions are activated in the consciousness state, but that connectivity fades along with loss of consciousness by anesthetics, and the return of consciousness was not associated with a significant restoration of cortical activation. Arousal-induced activations were mostly localized in deep, phylogenetically old brain structures rather than in the neocortex. These results suggested that the anesthetic recovery process may not simple mirror of induction.
-
(2012)
The Journal of Neuroscience: the Official Journal of the Society for Neuroscience
, vol.32
, pp. 4935-4943
-
-
Langsjo, J.W.1
Alkire, M.T.2
Kaskinoro, K.3
-
16
-
-
77955613374
-
A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
-
PID: 20689589
-
Friedman EB, Sun Y, Moore JT, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010;5:e11903. DOI: 10.1371/journal.pone.0011903
-
(2010)
PLoS One
, vol.5
-
-
Friedman, E.B.1
Sun, Y.2
Moore, J.T.3
-
17
-
-
85140975234
-
-
•• Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110:E1142–51. In humans, propofol-induced LOC was charaterized by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8–12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These changes were reversed with the recovery of consciousness.
-
(2013)
-
-
Purdon, P.L.1
Pierce, E.T.2
Mukamel, E.A.3
-
18
-
-
33646818802
-
Brain stem reticular formation and activation of the EEG
-
COI: 1:STN:280:DC%2BD1c3mtVGjuw%3D%3D, PID: 18421835
-
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73. DOI: 10.1016/0013-4694(49)90219-9
-
(1949)
Electroencephalogr Clin Neurophysiol
, vol.1
, pp. 455-473
-
-
Moruzzi, G.1
Magoun, H.W.2
-
19
-
-
27144454353
-
From waking to sleeping: neuronal and chemical substrates
-
COI: 1:CAS:528:DC%2BD2MXhtFKhsr3E, PID: 16183137
-
Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005;26:578–86. DOI: 10.1016/j.tips.2005.09.009
-
(2005)
Trends Pharmacol Sci
, vol.26
, pp. 578-586
-
-
Jones, B.E.1
-
20
-
-
0036785886
-
The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway
-
COI: 1:CAS:528:DC%2BD38XnsVGku7w%3D, PID: 12195434
-
Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–84. DOI: 10.1038/nn913
-
(2002)
Nat Neurosci
, vol.5
, pp. 979-984
-
-
Nelson, L.E.1
Guo, T.Z.2
Lu, J.3
-
21
-
-
85140966166
-
-
• Murphy M, Bruno MA, Riedner BA, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34:283–91A. This study examined 256-channel EEG recordings from humans during propofol anesthesia. The EEG properties were similar to those in sleep.
-
(2011)
-
-
Murphy, M.1
Bruno, M.A.2
Riedner, B.A.3
-
22
-
-
84855176674
-
Linking sleep and general anesthesia mechanisms: This is no walkover
-
This review found a discrepancy between natural sleep and anesthesia. For example, sleep seemed to originate in the subcortical structures, whereas anesthesia seemed to primarily affect the cortex, with subsequent repercussions on the activity of subcortical networks
-
• Bonhomme V, Boveroux P, Vanhaudenhuyse A, et al. Linking sleep and general anesthesia mechanisms: this is no walkover. Acta Anaesthesiol Belg. 2011;62:161–71. This review found a discrepancy between natural sleep and anesthesia. For example, sleep seemed to originate in the subcortical structures, whereas anesthesia seemed to primarily affect the cortex, with subsequent repercussions on the activity of subcortical networks.
-
(2011)
Acta Anaesthesiol Belg
, vol.62
, pp. 161-171
-
-
Bonhomme, V.1
Boveroux, P.2
Vanhaudenhuyse, A.3
-
23
-
-
79951723188
-
The effects of general anesthetics on the brain are similar to those of non-REM sleep. GABAergic neurons are involved in both anesthesia and sleep. Brain arousal systems might be responsible for the process of anesthetic emergence
-
Sleep and general anesthesia
-
• Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anaesth. 2011;58:139–48. The effects of general anesthetics on the brain are similar to those of non-REM sleep. GABAergic neurons are involved in both anesthesia and sleep. Brain arousal systems might be responsible for the process of anesthetic emergence.
-
(2011)
Can J Anaesth
, vol.58
, pp. 139-148
-
-
Franks, N.P.1
Zecharia, A.Y.2
-
24
-
-
79957522376
-
Effect sites of anesthetics in the central nervous system network—looking into the mechanisms for natural sleep and anesthesia
-
PID: 21626858
-
Fukuda S, Yasuda A, Lu Z, et al. Effect sites of anesthetics in the central nervous system network—looking into the mechanisms for natural sleep and anesthesia. Masui. 2011;60:544–58.
-
(2011)
Masui
, vol.60
, pp. 544-558
-
-
Fukuda, S.1
Yasuda, A.2
Lu, Z.3
-
25
-
-
84865280980
-
Interfaces of sleep and anesthesia
-
PID: 22901616
-
Mashour GA, Pal D. Interfaces of sleep and anesthesia. Anesthesiol Clin. 2012;30:385–98. DOI: 10.1016/j.anclin.2012.05.003
-
(2012)
Anesthesiol Clin
, vol.30
, pp. 385-398
-
-
Mashour, G.A.1
Pal, D.2
-
26
-
-
78650873111
-
General anesthesia, sleep, and coma
-
COI: 1:CAS:528:DC%2BC3MXisVamsA%3D%3D, PID: 21190458
-
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638–50. DOI: 10.1056/NEJMra0808281
-
(2010)
N Engl J Med
, vol.363
, pp. 2638-2650
-
-
Brown, E.N.1
Lydic, R.2
Schiff, N.D.3
-
27
-
-
78650986525
-
Topographical frequency dynamics within EEG and MEG sleep spindles
-
PID: 20637689
-
Dehghani N, Cash SS, Halgren E. Topographical frequency dynamics within EEG and MEG sleep spindles. Clin Neurophysiol. 2011;122:229–35. DOI: 10.1016/j.clinph.2010.06.018
-
(2011)
Clin Neurophysiol
, vol.122
, pp. 229-235
-
-
Dehghani, N.1
Cash, S.S.2
Halgren, E.3
-
28
-
-
84861317790
-
A core process in receptor function, general anesthesia, sleep, and aging
-
COI: 1:CAS:528:DC%2BC38XmvF2mu70%3D, PID: 22589093
-
Kier LB, Slattum PW. A core process in receptor function, general anesthesia, sleep, and aging. Chem Biodivers. 2012;9:930–4. DOI: 10.1002/cbdv.201100357
-
(2012)
Chem Biodivers
, vol.9
, pp. 930-934
-
-
Kier, L.B.1
Slattum, P.W.2
-
29
-
-
78650222269
-
Circadian aspects of post-operative morbidity and mortality
-
COI: 1:STN:280:DC%2BC3cbjslentg%3D%3D, PID: 20825368
-
Kvaslerud T, Hansen MV, Rosenberg J, et al. Circadian aspects of post-operative morbidity and mortality. Acta Anaesthesiol Scand. 2010;54:1157–63. DOI: 10.1111/j.1399-6576.2010.02296.x
-
(2010)
Acta Anaesthesiol Scand
, vol.54
, pp. 1157-1163
-
-
Kvaslerud, T.1
Hansen, M.V.2
Rosenberg, J.3
-
30
-
-
38449118205
-
Circadian distribution of sleep phases after major abdominal surgery
-
COI: 1:STN:280:DC%2BD2sjjtlehuw%3D%3D, PID: 18037670
-
Gogenur I, Wildschiotz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Br J Anaesth. 2008;100:45–9. DOI: 10.1093/bja/aem340
-
(2008)
Br J Anaesth
, vol.100
, pp. 45-49
-
-
Gogenur, I.1
Wildschiotz, G.2
Rosenberg, J.3
-
31
-
-
84864036998
-
Control of sleep and wakefulness
-
• Brown RE, Basheer R, McKenna JT, et al. Control of sleep and wakefulness. Physiol Rev. 2012;92:1087–187. This is a large volume of reviews on the recent progress of sleep studies by authorities in sleep science.
-
(2012)
Physiol Rev
, vol.92
, pp. 1087-1187
-
-
Brown, R.E.1
Basheer, R.2
McKenna, J.T.3
-
32
-
-
85140999078
-
-
• Muller CP, Pum ME, Amato D, et al. The in vivo neurochemistry of the brain during general anesthesia. J Neurochem. 2011;119:419–46. This review provides an overview of how general anesthetics affect various neurotransmitter systems in the brain during anesthetic induction, maintenance, and emergence.
-
(2011)
-
-
Muller, C.P.1
Pum, M.E.2
Amato, D.3
-
33
-
-
79957690784
-
General anesthesia and altered states of arousal: A systems neuroscience analysis
-
•• Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Ann Rev Neurosci. 2011;34:601–28. A systematic neuroscientific analysis of the altered arousal states induced by various intravenous anesthetics was performed. The behavioral and physiological properties of these agents are described, from their molecular targets to the neural circuits at which they are assumed to act.
-
(2011)
Ann Rev Neurosci
, vol.34
, pp. 601-628
-
-
Brown, E.N.1
Purdon, P.L.2
van Dort, C.J.3
-
34
-
-
12844258129
-
Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: relevance to thermoregulation during anesthesia
-
COI: 1:CAS:528:DC%2BD2MXos1aitw%3D%3D, PID: 15680693
-
Kushikata T, Hirota K, Kotani N, et al. Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: relevance to thermoregulation during anesthesia. Neuroscience. 2005;131:79–86. DOI: 10.1016/j.neuroscience.2004.11.007
-
(2005)
Neuroscience
, vol.131
, pp. 79-86
-
-
Kushikata, T.1
Hirota, K.2
Kotani, N.3
-
35
-
-
84856802069
-
Noradrenergic modulation of wakefulness/arousal
-
• Berridge CW, Schmeichel BE, Espana RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012;16:187–97. The role of the brain’s noradrenergic system in the locus coeruleus, and others crucially responsible for anesthetic action, is described.
-
(2012)
Sleep Med Rev
, vol.16
, pp. 187-197
-
-
Berridge, C.W.1
Schmeichel, B.E.2
Espana, R.A.3
-
36
-
-
85140980296
-
-
• Pillay S, Vizuete JA, McCallum JB, et al. Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology. 2011;115:733–42. This article provides evidence of the active emergence from anesthesia through the brain’s noradrenergic system.
-
(2011)
-
-
Pillay, S.1
Vizuete, J.A.2
McCallum, J.B.3
-
37
-
-
0021685250
-
Chronic and acute administration of typical and atypical antidepressants on activity of brain noradrenaline systems in the rat thiopentone anaesthesia model
-
COI: 1:CAS:528:DyaL2MXhslGgsg%3D%3D, PID: 6440174
-
Mason ST, Angel A. Chronic and acute administration of typical and atypical antidepressants on activity of brain noradrenaline systems in the rat thiopentone anaesthesia model. Psychopharmacology. 1984;84:304–9. DOI: 10.1007/BF00555203
-
(1984)
Psychopharmacology
, vol.84
, pp. 304-309
-
-
Mason, S.T.1
Angel, A.2
-
38
-
-
0020616943
-
Brain noradrenaline and anaesthesia: behavioural and electrophysiological evidence
-
COI: 1:CAS:528:DyaL2cXhtFCqtrs%3D, PID: 6417556
-
Mason ST, King RA, Banks P, et al. Brain noradrenaline and anaesthesia: behavioural and electrophysiological evidence. Neuroscience. 1983;10:177–85. DOI: 10.1016/0306-4522(83)90091-X
-
(1983)
Neuroscience
, vol.10
, pp. 177-185
-
-
Mason, S.T.1
King, R.A.2
Banks, P.3
-
39
-
-
81855183846
-
Role of coerulean noradrenergic neurones in general anaesthesia in rats
-
COI: 1:CAS:528:DC%2BC3MXhsFamsrvF, PID: 21965049
-
Kushikata T, Yoshida H, Kudo M, et al. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br J Anaesth. 2011;107:924–9. DOI: 10.1093/bja/aer303
-
(2011)
Br J Anaesth
, vol.107
, pp. 924-929
-
-
Kushikata, T.1
Yoshida, H.2
Kudo, M.3
-
40
-
-
85140961503
-
-
•• Chemali JJ, Van Dort CJ, Brown EN, et al. Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology. 2012;116:998–1005. Methylphenidate, an inhibitor of dopamine and norepinephrine transporters, shortened propofol anesthesia in rats. The authors provide evidence of the active emergence from anesthesia (propofol) through the brain’s dopaminergic system.
-
(2012)
-
-
Chemali, J.J.1
van Dort, C.J.2
Brown, E.N.3
-
41
-
-
84871610680
-
Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia
-
Activation of D1 receptors decreases the time to emergence from isoflurane anesthesia and reduces the depth of isoflurane-induced LOC. These results provide a possible mechanism for how methylphenidate acts on the anesthesia process
-
•• Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30–9. Activation of D1 receptors decreases the time to emergence from isoflurane anesthesia and reduces the depth of isoflurane-induced LOC. These results provide a possible mechanism for how methylphenidate acts on the anesthesia process.
-
(2013)
Anesthesiology
, vol.118
, pp. 30-39
-
-
Taylor, N.E.1
Chemali, J.J.2
Brown, E.N.3
-
42
-
-
84871610680
-
Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia
-
COI: 1:CAS:528:DC%2BC38XhvVymsb3M, PID: 23221866
-
Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30–9. DOI: 10.1097/ALN.0b013e318278c896
-
(2013)
Anesthesiology
, vol.118
, pp. 30-39
-
-
Taylor, N.E.1
Chemali, J.J.2
Brown, E.N.3
-
43
-
-
84870203086
-
Should we use psychostimulant drugs to boost the emergence from general anesthesia?
-
PID: 23168433, author reply 1394–1395
-
Petrenko AB, Takamatsu M, Baba H. Should we use psychostimulant drugs to boost the emergence from general anesthesia? Anesthesiology. 2012;117:1393–4 author reply 1394–1395. DOI: 10.1097/ALN.0b013e318272d898
-
(2012)
Anesthesiology
, vol.117
, pp. 1393-1394
-
-
Petrenko, A.B.1
Takamatsu, M.2
Baba, H.3
-
44
-
-
78650605597
-
Age and genetic strain differences in response to chronic methylphenidate administration
-
COI: 1:CAS:528:DC%2BC3MXmsFWmtA%3D%3D, PID: 21111006
-
Yang PB, Cuellar DO 3rd, Swann AC, et al. Age and genetic strain differences in response to chronic methylphenidate administration. Behav Brain Res. 2011;218:206–17. DOI: 10.1016/j.bbr.2010.11.034
-
(2011)
Behav Brain Res
, vol.218
, pp. 206-217
-
-
Yang, P.B.1
Cuellar, D.O.2
Swann, A.C.3
-
45
-
-
70649099211
-
The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents
-
PID: 19928382
-
Gruner JA, Marcy VR, Lin YG, et al. The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents. Sleep. 2009;32:1425–38.
-
(2009)
Sleep
, vol.32
, pp. 1425-1438
-
-
Gruner, J.A.1
Marcy, V.R.2
Lin, Y.G.3
-
46
-
-
79952961168
-
Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study
-
COI: 1:CAS:528:DC%2BC3MXjsFOhu7c%3D, PID: 21285081
-
Xie G, Deschamps A, Backman SB, et al. Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br J Anaesth. 2011;106:548–57. DOI: 10.1093/bja/aeq415
-
(2011)
Br J Anaesth
, vol.106
, pp. 548-557
-
-
Xie, G.1
Deschamps, A.2
Backman, S.B.3
-
47
-
-
0141996986
-
Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index
-
COI: 1:CAS:528:DC%2BD3sXns1Cgu7c%3D, PID: 14504163
-
Plourde G, Chartrand D, Fiset P, et al. Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br J Anaesth. 2003;91:583–6. DOI: 10.1093/bja/aeg209
-
(2003)
Br J Anaesth
, vol.91
, pp. 583-586
-
-
Plourde, G.1
Chartrand, D.2
Fiset, P.3
-
48
-
-
0028903773
-
Physostigmine in recovery from anaesthesia
-
COI: 1:STN:280:DyaK2Mzhtlyltw%3D%3D, PID: 7793555
-
Hamilton-Davies C, Bailie R, Restall J. Physostigmine in recovery from anaesthesia. Anaesthesia. 1995;50:456–8. DOI: 10.1111/j.1365-2044.1995.tb06004.x
-
(1995)
Anaesthesia
, vol.50
, pp. 456-458
-
-
Hamilton-Davies, C.1
Bailie, R.2
Restall, J.3
-
49
-
-
34547598476
-
Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat
-
COI: 1:CAS:528:DC%2BD2sXotlKitbo%3D, PID: 17667571
-
Alkire MT, McReynolds JR, Hahn EL, et al. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;107:264–72. DOI: 10.1097/01.anes.0000270741.33766.24
-
(2007)
Anesthesiology
, vol.107
, pp. 264-272
-
-
Alkire, M.T.1
McReynolds, J.R.2
Hahn, E.L.3
-
50
-
-
77955095177
-
Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats
-
COI: 1:CAS:528:DC%2BC3cXpsVajtbc%3D, PID: 20495137
-
Gamou S, Fukuda S, Ogura M, et al. Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats. Anesth Analg. 2010;111:395–402. DOI: 10.1213/ANE.0b013e3181e24776
-
(2010)
Anesth Analg
, vol.111
, pp. 395-402
-
-
Gamou, S.1
Fukuda, S.2
Ogura, M.3
-
51
-
-
79959497982
-
Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia
-
COI: 1:CAS:528:DC%2BC3MXnvVaktL8%3D, PID: 21562401
-
Luo T, Leung LS. Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology. 2011;115:36–43. DOI: 10.1097/ALN.0b013e3182207655
-
(2011)
Anesthesiology
, vol.115
, pp. 36-43
-
-
Luo, T.1
Leung, L.S.2
-
52
-
-
60849097577
-
The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse
-
COI: 1:CAS:528:DC%2BD1MXisV2hu70%3D, PID: 19228970
-
Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci. 2009;29:2177–87. DOI: 10.1523/JNEUROSCI.4997-08.2009
-
(2009)
J Neurosci
, vol.29
, pp. 2177-2187
-
-
Zecharia, A.Y.1
Nelson, L.E.2
Gent, T.C.3
-
53
-
-
84866406441
-
GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness
-
Mice with genetically deficient GABA neurons were more excitable and were insensitive to the anesthetic propofol in vitro; however, the deficiency had no effect on the propofol-induced LORR. Histaminergic TMN may not have a central role in anesthesia
-
•• Zecharia AY, Yu X, Gotz T, et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci. 2012;32:13062–75. Mice with genetically deficient GABA neurons were more excitable and were insensitive to the anesthetic propofol in vitro; however, the deficiency had no effect on the propofol-induced LORR. Histaminergic TMN may not have a central role in anesthesia.
-
(2012)
J Neurosci
, vol.32
, pp. 13062-13075
-
-
Zecharia, A.Y.1
Yu, X.2
Gotz, T.3
-
54
-
-
27644457084
-
Hypothalamic regulation of sleep and circadian rhythms
-
COI: 1:CAS:528:DC%2BD2MXhtFCrurrP, PID: 16251950
-
Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63. DOI: 10.1038/nature04284
-
(2005)
Nature
, vol.437
, pp. 1257-1263
-
-
Saper, C.B.1
Scammell, T.E.2
Lu, J.3
-
55
-
-
0026612362
-
The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum
-
COI: 1:CAS:528:DyaK38XitVygsro%3D, PID: 1312132
-
Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci. 1992;12:1063–76.
-
(1992)
J Neurosci
, vol.12
, pp. 1063-1076
-
-
Laurie, D.J.1
Seeburg, P.H.2
Wisden, W.3
-
56
-
-
0026615268
-
The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development
-
COI: 1:CAS:528:DyaK3sXhs1Okuw%3D%3D, PID: 1331359
-
Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12:4151–72.
-
(1992)
J Neurosci
, vol.12
, pp. 4151-4172
-
-
Laurie, D.J.1
Wisden, W.2
Seeburg, P.H.3
-
57
-
-
0026612363
-
The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon
-
COI: 1:CAS:528:DyaK38XisV2juro%3D, PID: 1312131
-
Wisden W, Laurie DJ, Monyer H, et al. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992;12:1040–62.
-
(1992)
J Neurosci
, vol.12
, pp. 1040-1062
-
-
Wisden, W.1
Laurie, D.J.2
Monyer, H.3
-
58
-
-
84863791625
-
Conscious processing: Implications for general anesthesia
-
Preferential inhibition of global feedback (from frontal to parietal) connectivity by general anesthetics through the GABA receptors is considered one of the key mechanisms whereby anesthetics induce LOC
-
• Changeux JP. Conscious processing: implications for general anesthesia. Curr Opin Anaesthesiol. 2012;25:397–404. Preferential inhibition of global feedback (from frontal to parietal) connectivity by general anesthetics through the GABA receptors is considered one of the key mechanisms whereby anesthetics induce LOC.
-
(2012)
Curr Opin Anaesthesiol
, vol.25
, pp. 397-404
-
-
Changeux, J.P.1
-
59
-
-
34447320197
-
Correlating the clinical actions and molecular mechanisms of general anesthetics
-
PID: 17620835
-
Solt K, Forman SA. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol. 2007;20:300–6. DOI: 10.1097/ACO.0b013e32816678a5
-
(2007)
Curr Opin Anaesthesiol
, vol.20
, pp. 300-306
-
-
Solt, K.1
Forman, S.A.2
-
60
-
-
84875424532
-
New insights into the classification and nomenclature of cortical GABAergic interneurons
-
COI: 1:CAS:528:DC%2BC3sXitVGgt7w%3D, PID: 23385869
-
DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202–16. DOI: 10.1038/nrn3444
-
(2013)
Nat Rev Neurosci
, vol.14
, pp. 202-216
-
-
DeFelipe, J.1
Lopez-Cruz, P.L.2
Benavides-Piccione, R.3
-
61
-
-
77249083662
-
Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness
-
COI: 1:CAS:528:DC%2BC3cXit1Sku7s%3D, PID: 20133802
-
Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;107:2681–6. DOI: 10.1073/pnas.0913008107
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 2681-2686
-
-
Ferrarelli, F.1
Massimini, M.2
Sarasso, S.3
-
62
-
-
84864286556
-
Mapping sensorimotor cortex with slow cortical potential resting-state networks while awake and under anesthesia
-
PID: 22517255, discussion 316
-
Breshears JD, Gaona CM, Roland JL, et al. Mapping sensorimotor cortex with slow cortical potential resting-state networks while awake and under anesthesia. Neurosurgery. 2012;71:305–16 discussion 316. DOI: 10.1227/NEU.0b013e318258e5d1
-
(2012)
Neurosurgery
, vol.71
, pp. 305-316
-
-
Breshears, J.D.1
Gaona, C.M.2
Roland, J.L.3
-
63
-
-
78650474059
-
Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia
-
COI: 1:CAS:528:DC%2BC3cXhsFyls7bM, PID: 21078987
-
Breshears JD, Roland JL, Sharma M, et al. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci USA. 2010;107:21170–5. DOI: 10.1073/pnas.1011949107
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 21170-21175
-
-
Breshears, J.D.1
Roland, J.L.2
Sharma, M.3
-
64
-
-
38349014090
-
Losing inhibition with ketamine
-
COI: 1:CAS:528:DC%2BD1cXnt1Cmtw%3D%3D, PID: 18202677
-
Seamans J. Losing inhibition with ketamine. Nat Chem Biol. 2008;4:91–3. DOI: 10.1038/nchembio0208-91
-
(2008)
Nat Chem Biol
, vol.4
, pp. 91-93
-
-
Seamans, J.1
-
65
-
-
39049114191
-
Ketamine
-
Schuttler J, Schwilden H, (eds), Springer, Heidelberg
-
Sinner B, Graf BM. Ketamine. In: Schuttler J, Schwilden H, editors. Handbook of experimental pharmacology, vol. 182. Heidelberg: Springer; 2008. p. 313–33.
-
(2008)
Handbook of experimental pharmacology
, vol.182
, pp. 313-333
-
-
Sinner, B.1
Graf, B.M.2
-
66
-
-
45549096136
-
Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits
-
COI: 1:CAS:528:DC%2BD1cXmt1Sltb8%3D, PID: 18480294
-
Hevers W, Hadley SH, Luddens H, et al. Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci. 2008;28:5383–93. DOI: 10.1523/JNEUROSCI.5443-07.2008
-
(2008)
J Neurosci
, vol.28
, pp. 5383-5393
-
-
Hevers, W.1
Hadley, S.H.2
Luddens, H.3
-
67
-
-
84876440062
-
Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states
-
COI: 1:CAS:528:DC%2BC3sXntVWjt7k%3D, PID: 23620827
-
Furutani N, Hondo M, Kageyama H, et al. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One. 2013;8:e62391. DOI: 10.1371/journal.pone.0062391
-
(2013)
PLoS One
, vol.8
-
-
Furutani, N.1
Hondo, M.2
Kageyama, H.3
-
68
-
-
79955777621
-
Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep
-
COI: 1:CAS:528:DC%2BC3MXls1Oltrs%3D, PID: 21525292
-
Mieda M, Hasegawa E, Kisanuki YY, et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31:6518–26. DOI: 10.1523/JNEUROSCI.6506-10.2011
-
(2011)
J Neurosci
, vol.31
, pp. 6518-6526
-
-
Mieda, M.1
Hasegawa, E.2
Kisanuki, Y.Y.3
-
69
-
-
84883441101
-
Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation
-
COI: 1:CAS:528:DC%2BC3sXhsVenurfE, PID: 24005305
-
Soya S, Shoji H, Hasegawa E, et al. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci. 2013;33:14549–57. DOI: 10.1523/JNEUROSCI.1130-13.2013
-
(2013)
J Neurosci
, vol.33
, pp. 14549-14557
-
-
Soya, S.1
Shoji, H.2
Hasegawa, E.3
-
70
-
-
84855479864
-
Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain
-
COI: 1:CAS:528:DC%2BC38XlsFSlug%3D%3D, PID: 21963829
-
Kornum BR, Faraco J, Mignot E. Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Curr Opin Neurobiol. 2011;21:897–903. DOI: 10.1016/j.conb.2011.09.003
-
(2011)
Curr Opin Neurobiol
, vol.21
, pp. 897-903
-
-
Kornum, B.R.1
Faraco, J.2
Mignot, E.3
-
71
-
-
0344420403
-
Orexin A elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats
-
COI: 1:CAS:528:DC%2BD2cXkvFaqsw%3D%3D, PID: 14633539
-
Yasuda Y, Takeda A, Fukuda S, et al. Orexin A elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats. Anesth Analg. 2003;97:1663–6. DOI: 10.1213/01.ANE.0000089964.85834.EF
-
(2003)
Anesth Analg
, vol.97
, pp. 1663-1666
-
-
Yasuda, Y.1
Takeda, A.2
Fukuda, S.3
-
72
-
-
84886933304
-
In vitro and in vivo pharmacological characterization of the novel neuropeptide S receptor ligands QA1 and PI1
-
Camarda V, Ruzza C, Rizzi A, et al. In vitro and in vivo pharmacological characterization of the novel neuropeptide S receptor ligands QA1 and PI1. Peptides. 2013;48C:27–35. DOI: 10.1016/j.peptides.2013.07.018
-
(2013)
Peptides
, vol.48C
, pp. 27-35
-
-
Camarda, V.1
Ruzza, C.2
Rizzi, A.3
-
73
-
-
79953169084
-
The effects of neuropeptide S on general anesthesia in rats
-
COI: 1:CAS:528:DC%2BC3MXjslKrtr8%3D, PID: 21288975
-
Kushikata T, Yoshida H, Kudo M, et al. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg. 2011;112:845–9. DOI: 10.1213/ANE.0b013e31820b990d
-
(2011)
Anesth Analg
, vol.112
, pp. 845-849
-
-
Kushikata, T.1
Yoshida, H.2
Kudo, M.3
-
74
-
-
85141001718
-
Harnessing anesthesia and brain imaging for the study of human consciousness
-
Epub ahead of print
-
Langsjo JW, Revonsuo A, Scheinin H. Harnessing anesthesia and brain imaging for the study of human consciousness. Curr Pharm Des. 2013 [Epub ahead of print].
-
(2013)
Curr Pharm Des
-
-
Langsjo, J.W.1
Revonsuo, A.2
Scheinin, H.3
-
75
-
-
84870346734
-
Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain
-
PID: 22905821
-
Spreng RN, Sepulcre J, Turner GR, et al. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci. 2013;25:74–86. DOI: 10.1162/jocn_a_00281
-
(2013)
J Cogn Neurosci
, vol.25
, pp. 74-86
-
-
Spreng, R.N.1
Sepulcre, J.2
Turner, G.R.3
|