메뉴 건너뛰기




Volumn 4, Issue 1, 2014, Pages 49-56

Mechanisms of Anesthetic Emergence: Evidence for Active Reanimation

Author keywords

Anesthetic emergence; Brain network; Neuromodulator; Neurotransmitter; Sleep

Indexed keywords


EID: 84940221414     PISSN: 21676275     EISSN: 15233855     Source Type: Journal    
DOI: 10.1007/s40140-013-0045-2     Document Type: Article
Times cited : (13)

References (75)
  • 1
    • 84878653108 scopus 로고    scopus 로고
    • General anesthesia and human brain connectivity
    • The process of anesthetic emergence may not simply mirror that of anesthetic induction. The prime candidates are those based on the posterior parietal–cingulate–precuneus region and the nonspecific thalamus
    • • Hudetz AG. General anesthesia and human brain connectivity. Brain Connect. 2012;2:291–302. The process of anesthetic emergence may not simply mirror that of anesthetic induction. The prime candidates are those based on the posterior parietal–cingulate–precuneus region and the nonspecific thalamus.
    • (2012) Brain Connect , vol.2 , pp. 291
    • Hudetz, A.G.1
  • 2
    • 0142247467 scopus 로고    scopus 로고
    • Orexinergic neurons and barbiturate anesthesia
    • COI: 1:CAS:528:DC%2BD3sXot1yru7g%3D, PID: 14580935
    • Kushikata T, Hirota K, Yoshida H, et al. Orexinergic neurons and barbiturate anesthesia. Neuroscience. 2003;121:855–63. DOI: 10.1016/S0306-4522(03)00554-2
    • (2003) Neuroscience , vol.121 , pp. 855-863
    • Kushikata, T.1    Hirota, K.2    Yoshida, H.3
  • 3
    • 79952248679 scopus 로고    scopus 로고
    • Effects of orexin-A on propofol anesthesia in rats
    • PID: 21153424
    • Shirasaka T, Yonaha T, Onizuka S, et al. Effects of orexin-A on propofol anesthesia in rats. J Anesth. 2011;25:65–71. DOI: 10.1007/s00540-010-1071-6
    • (2011) J Anesth , vol.25 , pp. 65-71
    • Shirasaka, T.1    Yonaha, T.2    Onizuka, S.3
  • 4
    • 84866922347 scopus 로고    scopus 로고
    • Orexin-A facilitates emergence from propofol anesthesia in the rat
    • COI: 1:CAS:528:DC%2BC38Xhtl2rurzO, PID: 22798527
    • Zhang LN, Li ZJ, Tong L, et al. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg. 2012;115:789–96. DOI: 10.1213/ANE.0b013e3182645ea3
    • (2012) Anesth Analg , vol.115 , pp. 789-796
    • Zhang, L.N.1    Li, Z.J.2    Tong, L.3
  • 5
    • 59649103743 scopus 로고    scopus 로고
    • Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity
    • COI: 1:CAS:528:DC%2BD1MXitF2jtr0%3D, PID: 19151277
    • Tose R, Kushikata T, Yoshida H, et al. Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity. Anesth Analg. 2009;108:491–5. DOI: 10.1213/ane.0b013e31819000c8
    • (2009) Anesth Analg , vol.108 , pp. 491-495
    • Tose, R.1    Kushikata, T.2    Yoshida, H.3
  • 6
    • 39549098333 scopus 로고    scopus 로고
    • An essential role for orexins in emergence from general anesthesia
    • COI: 1:CAS:528:DC%2BD1cXhs1Klsrw%3D, PID: 18195361
    • Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309–14. DOI: 10.1073/pnas.0707146105
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 1309-1314
    • Kelz, M.B.1    Sun, Y.2    Chen, J.3
  • 7
    • 79953198223 scopus 로고    scopus 로고
    • Dissociable network properties of anesthetic state transitions
    • This study used multichannel EEG recordings from adult human volunteers given propofol. Various network parameters of brain connectivity were altered by propofol-induced LOC. Parietal networks play a critical role as targets for general anesthetics
    • • Lee U, Muller M, Noh GJ, et al. Dissociable network properties of anesthetic state transitions. Anesthesiology. 2011;114:872–81. This study used multichannel EEG recordings from adult human volunteers given propofol. Various network parameters of brain connectivity were altered by propofol-induced LOC. Parietal networks play a critical role as targets for general anesthetics.
    • (2011) Anesthesiology , vol.114 , pp. 872
    • Lee, U.1    Muller, M.2    Noh, G.J.3
  • 8
    • 85140991917 scopus 로고    scopus 로고
    • • Sanders RD, Tononi G, Laureys S, et al. Unresponsiveness not equal unconsciousness. Anesthesiology. 2012;116:946–59. Consciousness, connectedness, and responsiveness should be recognized as different concepts. Sequential activation of consciousness, connectedness to the environment, and responsiveness is an important process for smooth and uneventful emergence from anesthesia.
    • (2012)
    • Sanders, R.D.1    Tononi, G.2    Laureys, S.3
  • 9
    • 84894381817 scopus 로고    scopus 로고
    • Reconfiguration of network hub structure after propofol-induced unconsciousness
    • •• Lee H, Mashour GA, Noh GJ, et al. Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology, 2013;119:1347–1356. Propofol changes the topologic properties of the network hub structure in the brain and reverses the phase relationship between the frontal and parietal regions. This change is closely associated with states of consciousness.
    • (2013) Anesthesiology , vol.119 , pp. 1347-1356
    • Lee, H.1    Mashour, G.A.2    Noh, G.J.3
  • 10
    • 84883255490 scopus 로고    scopus 로고
    • Consciousness, anesthesia, and neural synchrony
    • PID: 23503372
    • Mashour GA. Consciousness, anesthesia, and neural synchrony. Anesthesiology. 2013;119:7–9. DOI: 10.1097/ALN.0b013e31828e8974
    • (2013) Anesthesiology , vol.119 , pp. 7-9
    • Mashour, G.A.1
  • 11
    • 85141001874 scopus 로고    scopus 로고
    • •• Shin J, Mashour GA, Ku S, et al. Subgraph “backbone” analysis of dynamic brain networks during consciousness and anesthesia. PloS One. 2013;8:e70899. General anesthesia significantly alters brain network connectivity. Some typical and common patterns derived from multichannel EEG, defined as “network backbones,” changed rapidly across states of consciousness with various anesthetics.
    • (2013)
    • Shin, J.1    Mashour, G.A.2    Ku, S.3
  • 12
    • 85140973535 scopus 로고    scopus 로고
    • • Lewis LD, Weiner VS, Mukamel EA, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2012;109:E3377–86. In propofol-induced LOC, local neuronal networks remain intact but become functionally isolated in time and space.
    • (2012)
    • Lewis, L.D.1    Weiner, V.S.2    Mukamel, E.A.3
  • 13
    • 84866245073 scopus 로고    scopus 로고
    • Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness
    • This functional MRI study in humans with propofol found a breakdown in subcortico-cortical and cortico-cortical connectivity. The degree of the breakdown varied. The decrease in connectivity was pronounced in thalamocortical connections, whereas no changes were found in connectivity within the primary sensory cortices
    • • Schroter MS, Spoormaker VI, Schorer A, et al. Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. J Neurosci. 2012;32:12832–40. This functional MRI study in humans with propofol found a breakdown in subcortico-cortical and cortico-cortical connectivity. The degree of the breakdown varied. The decrease in connectivity was pronounced in thalamocortical connections, whereas no changes were found in connectivity within the primary sensory cortices.
    • (2012) J Neurosci , vol.32 , pp. 12832-12840
    • Schroter, M.S.1    Spoormaker, V.I.2    Schorer, A.3
  • 14
    • 84880459447 scopus 로고    scopus 로고
    • Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness
    • COI: 1:CAS:528:DC%2BC3sXhtFWjtrbN, PID: 23825412
    • Vijayan S, Ching S, Purdon PL, et al. Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. J Neurosci. 2013;33:11070–5. DOI: 10.1523/JNEUROSCI.5670-12.2013
    • (2013) J Neurosci , vol.33 , pp. 11070-11075
    • Vijayan, S.1    Ching, S.2    Purdon, P.L.3
  • 15
    • 84859372207 scopus 로고    scopus 로고
    • Returning from oblivion: Imaging the neural core of consciousness
    • PET study with humans indicated several brain regions are activated in the consciousness state, but that connectivity fades along with loss of consciousness by anesthetics, and the return of consciousness was not associated with a significant restoration of cortical activation. Arousal-induced activations were mostly localized in deep, phylogenetically old brain structures rather than in the neocortex. These results suggested that the anesthetic recovery process may not simple mirror of induction
    • •• Langsjo JW, Alkire MT, Kaskinoro K, et al. Returning from oblivion: imaging the neural core of consciousness. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32:4935–43. PET study with humans indicated several brain regions are activated in the consciousness state, but that connectivity fades along with loss of consciousness by anesthetics, and the return of consciousness was not associated with a significant restoration of cortical activation. Arousal-induced activations were mostly localized in deep, phylogenetically old brain structures rather than in the neocortex. These results suggested that the anesthetic recovery process may not simple mirror of induction.
    • (2012) The Journal of Neuroscience: the Official Journal of the Society for Neuroscience , vol.32 , pp. 4935-4943
    • Langsjo, J.W.1    Alkire, M.T.2    Kaskinoro, K.3
  • 16
    • 77955613374 scopus 로고    scopus 로고
    • A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
    • PID: 20689589
    • Friedman EB, Sun Y, Moore JT, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One. 2010;5:e11903. DOI: 10.1371/journal.pone.0011903
    • (2010) PLoS One , vol.5
    • Friedman, E.B.1    Sun, Y.2    Moore, J.T.3
  • 17
    • 85140975234 scopus 로고    scopus 로고
    • •• Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110:E1142–51. In humans, propofol-induced LOC was charaterized by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8–12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These changes were reversed with the recovery of consciousness.
    • (2013)
    • Purdon, P.L.1    Pierce, E.T.2    Mukamel, E.A.3
  • 18
    • 33646818802 scopus 로고
    • Brain stem reticular formation and activation of the EEG
    • COI: 1:STN:280:DC%2BD1c3mtVGjuw%3D%3D, PID: 18421835
    • Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73. DOI: 10.1016/0013-4694(49)90219-9
    • (1949) Electroencephalogr Clin Neurophysiol , vol.1 , pp. 455-473
    • Moruzzi, G.1    Magoun, H.W.2
  • 19
    • 27144454353 scopus 로고    scopus 로고
    • From waking to sleeping: neuronal and chemical substrates
    • COI: 1:CAS:528:DC%2BD2MXhtFKhsr3E, PID: 16183137
    • Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005;26:578–86. DOI: 10.1016/j.tips.2005.09.009
    • (2005) Trends Pharmacol Sci , vol.26 , pp. 578-586
    • Jones, B.E.1
  • 20
    • 0036785886 scopus 로고    scopus 로고
    • The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway
    • COI: 1:CAS:528:DC%2BD38XnsVGku7w%3D, PID: 12195434
    • Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–84. DOI: 10.1038/nn913
    • (2002) Nat Neurosci , vol.5 , pp. 979-984
    • Nelson, L.E.1    Guo, T.Z.2    Lu, J.3
  • 21
    • 85140966166 scopus 로고    scopus 로고
    • • Murphy M, Bruno MA, Riedner BA, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34:283–91A. This study examined 256-channel EEG recordings from humans during propofol anesthesia. The EEG properties were similar to those in sleep.
    • (2011)
    • Murphy, M.1    Bruno, M.A.2    Riedner, B.A.3
  • 22
    • 84855176674 scopus 로고    scopus 로고
    • Linking sleep and general anesthesia mechanisms: This is no walkover
    • This review found a discrepancy between natural sleep and anesthesia. For example, sleep seemed to originate in the subcortical structures, whereas anesthesia seemed to primarily affect the cortex, with subsequent repercussions on the activity of subcortical networks
    • • Bonhomme V, Boveroux P, Vanhaudenhuyse A, et al. Linking sleep and general anesthesia mechanisms: this is no walkover. Acta Anaesthesiol Belg. 2011;62:161–71. This review found a discrepancy between natural sleep and anesthesia. For example, sleep seemed to originate in the subcortical structures, whereas anesthesia seemed to primarily affect the cortex, with subsequent repercussions on the activity of subcortical networks.
    • (2011) Acta Anaesthesiol Belg , vol.62 , pp. 161-171
    • Bonhomme, V.1    Boveroux, P.2    Vanhaudenhuyse, A.3
  • 23
    • 79951723188 scopus 로고    scopus 로고
    • The effects of general anesthetics on the brain are similar to those of non-REM sleep. GABAergic neurons are involved in both anesthesia and sleep. Brain arousal systems might be responsible for the process of anesthetic emergence
    • Sleep and general anesthesia
    • • Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anaesth. 2011;58:139–48. The effects of general anesthetics on the brain are similar to those of non-REM sleep. GABAergic neurons are involved in both anesthesia and sleep. Brain arousal systems might be responsible for the process of anesthetic emergence.
    • (2011) Can J Anaesth , vol.58 , pp. 139-148
    • Franks, N.P.1    Zecharia, A.Y.2
  • 24
    • 79957522376 scopus 로고    scopus 로고
    • Effect sites of anesthetics in the central nervous system network—looking into the mechanisms for natural sleep and anesthesia
    • PID: 21626858
    • Fukuda S, Yasuda A, Lu Z, et al. Effect sites of anesthetics in the central nervous system network—looking into the mechanisms for natural sleep and anesthesia. Masui. 2011;60:544–58.
    • (2011) Masui , vol.60 , pp. 544-558
    • Fukuda, S.1    Yasuda, A.2    Lu, Z.3
  • 25
    • 84865280980 scopus 로고    scopus 로고
    • Interfaces of sleep and anesthesia
    • PID: 22901616
    • Mashour GA, Pal D. Interfaces of sleep and anesthesia. Anesthesiol Clin. 2012;30:385–98. DOI: 10.1016/j.anclin.2012.05.003
    • (2012) Anesthesiol Clin , vol.30 , pp. 385-398
    • Mashour, G.A.1    Pal, D.2
  • 26
    • 78650873111 scopus 로고    scopus 로고
    • General anesthesia, sleep, and coma
    • COI: 1:CAS:528:DC%2BC3MXisVamsA%3D%3D, PID: 21190458
    • Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638–50. DOI: 10.1056/NEJMra0808281
    • (2010) N Engl J Med , vol.363 , pp. 2638-2650
    • Brown, E.N.1    Lydic, R.2    Schiff, N.D.3
  • 27
    • 78650986525 scopus 로고    scopus 로고
    • Topographical frequency dynamics within EEG and MEG sleep spindles
    • PID: 20637689
    • Dehghani N, Cash SS, Halgren E. Topographical frequency dynamics within EEG and MEG sleep spindles. Clin Neurophysiol. 2011;122:229–35. DOI: 10.1016/j.clinph.2010.06.018
    • (2011) Clin Neurophysiol , vol.122 , pp. 229-235
    • Dehghani, N.1    Cash, S.S.2    Halgren, E.3
  • 28
    • 84861317790 scopus 로고    scopus 로고
    • A core process in receptor function, general anesthesia, sleep, and aging
    • COI: 1:CAS:528:DC%2BC38XmvF2mu70%3D, PID: 22589093
    • Kier LB, Slattum PW. A core process in receptor function, general anesthesia, sleep, and aging. Chem Biodivers. 2012;9:930–4. DOI: 10.1002/cbdv.201100357
    • (2012) Chem Biodivers , vol.9 , pp. 930-934
    • Kier, L.B.1    Slattum, P.W.2
  • 29
    • 78650222269 scopus 로고    scopus 로고
    • Circadian aspects of post-operative morbidity and mortality
    • COI: 1:STN:280:DC%2BC3cbjslentg%3D%3D, PID: 20825368
    • Kvaslerud T, Hansen MV, Rosenberg J, et al. Circadian aspects of post-operative morbidity and mortality. Acta Anaesthesiol Scand. 2010;54:1157–63. DOI: 10.1111/j.1399-6576.2010.02296.x
    • (2010) Acta Anaesthesiol Scand , vol.54 , pp. 1157-1163
    • Kvaslerud, T.1    Hansen, M.V.2    Rosenberg, J.3
  • 30
    • 38449118205 scopus 로고    scopus 로고
    • Circadian distribution of sleep phases after major abdominal surgery
    • COI: 1:STN:280:DC%2BD2sjjtlehuw%3D%3D, PID: 18037670
    • Gogenur I, Wildschiotz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Br J Anaesth. 2008;100:45–9. DOI: 10.1093/bja/aem340
    • (2008) Br J Anaesth , vol.100 , pp. 45-49
    • Gogenur, I.1    Wildschiotz, G.2    Rosenberg, J.3
  • 31
    • 84864036998 scopus 로고    scopus 로고
    • Control of sleep and wakefulness
    • • Brown RE, Basheer R, McKenna JT, et al. Control of sleep and wakefulness. Physiol Rev. 2012;92:1087–187. This is a large volume of reviews on the recent progress of sleep studies by authorities in sleep science.
    • (2012) Physiol Rev , vol.92 , pp. 1087-1187
    • Brown, R.E.1    Basheer, R.2    McKenna, J.T.3
  • 32
    • 85140999078 scopus 로고    scopus 로고
    • • Muller CP, Pum ME, Amato D, et al. The in vivo neurochemistry of the brain during general anesthesia. J Neurochem. 2011;119:419–46. This review provides an overview of how general anesthetics affect various neurotransmitter systems in the brain during anesthetic induction, maintenance, and emergence.
    • (2011)
    • Muller, C.P.1    Pum, M.E.2    Amato, D.3
  • 33
    • 79957690784 scopus 로고    scopus 로고
    • General anesthesia and altered states of arousal: A systems neuroscience analysis
    • •• Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Ann Rev Neurosci. 2011;34:601–28. A systematic neuroscientific analysis of the altered arousal states induced by various intravenous anesthetics was performed. The behavioral and physiological properties of these agents are described, from their molecular targets to the neural circuits at which they are assumed to act.
    • (2011) Ann Rev Neurosci , vol.34 , pp. 601-628
    • Brown, E.N.1    Purdon, P.L.2    van Dort, C.J.3
  • 34
    • 12844258129 scopus 로고    scopus 로고
    • Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: relevance to thermoregulation during anesthesia
    • COI: 1:CAS:528:DC%2BD2MXos1aitw%3D%3D, PID: 15680693
    • Kushikata T, Hirota K, Kotani N, et al. Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: relevance to thermoregulation during anesthesia. Neuroscience. 2005;131:79–86. DOI: 10.1016/j.neuroscience.2004.11.007
    • (2005) Neuroscience , vol.131 , pp. 79-86
    • Kushikata, T.1    Hirota, K.2    Kotani, N.3
  • 35
    • 84856802069 scopus 로고    scopus 로고
    • Noradrenergic modulation of wakefulness/arousal
    • • Berridge CW, Schmeichel BE, Espana RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012;16:187–97. The role of the brain’s noradrenergic system in the locus coeruleus, and others crucially responsible for anesthetic action, is described.
    • (2012) Sleep Med Rev , vol.16 , pp. 187-197
    • Berridge, C.W.1    Schmeichel, B.E.2    Espana, R.A.3
  • 36
    • 85140980296 scopus 로고    scopus 로고
    • • Pillay S, Vizuete JA, McCallum JB, et al. Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology. 2011;115:733–42. This article provides evidence of the active emergence from anesthesia through the brain’s noradrenergic system.
    • (2011)
    • Pillay, S.1    Vizuete, J.A.2    McCallum, J.B.3
  • 37
    • 0021685250 scopus 로고
    • Chronic and acute administration of typical and atypical antidepressants on activity of brain noradrenaline systems in the rat thiopentone anaesthesia model
    • COI: 1:CAS:528:DyaL2MXhslGgsg%3D%3D, PID: 6440174
    • Mason ST, Angel A. Chronic and acute administration of typical and atypical antidepressants on activity of brain noradrenaline systems in the rat thiopentone anaesthesia model. Psychopharmacology. 1984;84:304–9. DOI: 10.1007/BF00555203
    • (1984) Psychopharmacology , vol.84 , pp. 304-309
    • Mason, S.T.1    Angel, A.2
  • 38
    • 0020616943 scopus 로고
    • Brain noradrenaline and anaesthesia: behavioural and electrophysiological evidence
    • COI: 1:CAS:528:DyaL2cXhtFCqtrs%3D, PID: 6417556
    • Mason ST, King RA, Banks P, et al. Brain noradrenaline and anaesthesia: behavioural and electrophysiological evidence. Neuroscience. 1983;10:177–85. DOI: 10.1016/0306-4522(83)90091-X
    • (1983) Neuroscience , vol.10 , pp. 177-185
    • Mason, S.T.1    King, R.A.2    Banks, P.3
  • 39
    • 81855183846 scopus 로고    scopus 로고
    • Role of coerulean noradrenergic neurones in general anaesthesia in rats
    • COI: 1:CAS:528:DC%2BC3MXhsFamsrvF, PID: 21965049
    • Kushikata T, Yoshida H, Kudo M, et al. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br J Anaesth. 2011;107:924–9. DOI: 10.1093/bja/aer303
    • (2011) Br J Anaesth , vol.107 , pp. 924-929
    • Kushikata, T.1    Yoshida, H.2    Kudo, M.3
  • 40
    • 85140961503 scopus 로고    scopus 로고
    • •• Chemali JJ, Van Dort CJ, Brown EN, et al. Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology. 2012;116:998–1005. Methylphenidate, an inhibitor of dopamine and norepinephrine transporters, shortened propofol anesthesia in rats. The authors provide evidence of the active emergence from anesthesia (propofol) through the brain’s dopaminergic system.
    • (2012)
    • Chemali, J.J.1    van Dort, C.J.2    Brown, E.N.3
  • 41
    • 84871610680 scopus 로고    scopus 로고
    • Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia
    • Activation of D1 receptors decreases the time to emergence from isoflurane anesthesia and reduces the depth of isoflurane-induced LOC. These results provide a possible mechanism for how methylphenidate acts on the anesthesia process
    • •• Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30–9. Activation of D1 receptors decreases the time to emergence from isoflurane anesthesia and reduces the depth of isoflurane-induced LOC. These results provide a possible mechanism for how methylphenidate acts on the anesthesia process.
    • (2013) Anesthesiology , vol.118 , pp. 30-39
    • Taylor, N.E.1    Chemali, J.J.2    Brown, E.N.3
  • 42
    • 84871610680 scopus 로고    scopus 로고
    • Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia
    • COI: 1:CAS:528:DC%2BC38XhvVymsb3M, PID: 23221866
    • Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30–9. DOI: 10.1097/ALN.0b013e318278c896
    • (2013) Anesthesiology , vol.118 , pp. 30-39
    • Taylor, N.E.1    Chemali, J.J.2    Brown, E.N.3
  • 43
    • 84870203086 scopus 로고    scopus 로고
    • Should we use psychostimulant drugs to boost the emergence from general anesthesia?
    • PID: 23168433, author reply 1394–1395
    • Petrenko AB, Takamatsu M, Baba H. Should we use psychostimulant drugs to boost the emergence from general anesthesia? Anesthesiology. 2012;117:1393–4 author reply 1394–1395. DOI: 10.1097/ALN.0b013e318272d898
    • (2012) Anesthesiology , vol.117 , pp. 1393-1394
    • Petrenko, A.B.1    Takamatsu, M.2    Baba, H.3
  • 44
    • 78650605597 scopus 로고    scopus 로고
    • Age and genetic strain differences in response to chronic methylphenidate administration
    • COI: 1:CAS:528:DC%2BC3MXmsFWmtA%3D%3D, PID: 21111006
    • Yang PB, Cuellar DO 3rd, Swann AC, et al. Age and genetic strain differences in response to chronic methylphenidate administration. Behav Brain Res. 2011;218:206–17. DOI: 10.1016/j.bbr.2010.11.034
    • (2011) Behav Brain Res , vol.218 , pp. 206-217
    • Yang, P.B.1    Cuellar, D.O.2    Swann, A.C.3
  • 45
    • 70649099211 scopus 로고    scopus 로고
    • The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents
    • PID: 19928382
    • Gruner JA, Marcy VR, Lin YG, et al. The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents. Sleep. 2009;32:1425–38.
    • (2009) Sleep , vol.32 , pp. 1425-1438
    • Gruner, J.A.1    Marcy, V.R.2    Lin, Y.G.3
  • 46
    • 79952961168 scopus 로고    scopus 로고
    • Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study
    • COI: 1:CAS:528:DC%2BC3MXjsFOhu7c%3D, PID: 21285081
    • Xie G, Deschamps A, Backman SB, et al. Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br J Anaesth. 2011;106:548–57. DOI: 10.1093/bja/aeq415
    • (2011) Br J Anaesth , vol.106 , pp. 548-557
    • Xie, G.1    Deschamps, A.2    Backman, S.B.3
  • 47
    • 0141996986 scopus 로고    scopus 로고
    • Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index
    • COI: 1:CAS:528:DC%2BD3sXns1Cgu7c%3D, PID: 14504163
    • Plourde G, Chartrand D, Fiset P, et al. Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br J Anaesth. 2003;91:583–6. DOI: 10.1093/bja/aeg209
    • (2003) Br J Anaesth , vol.91 , pp. 583-586
    • Plourde, G.1    Chartrand, D.2    Fiset, P.3
  • 48
    • 0028903773 scopus 로고
    • Physostigmine in recovery from anaesthesia
    • COI: 1:STN:280:DyaK2Mzhtlyltw%3D%3D, PID: 7793555
    • Hamilton-Davies C, Bailie R, Restall J. Physostigmine in recovery from anaesthesia. Anaesthesia. 1995;50:456–8. DOI: 10.1111/j.1365-2044.1995.tb06004.x
    • (1995) Anaesthesia , vol.50 , pp. 456-458
    • Hamilton-Davies, C.1    Bailie, R.2    Restall, J.3
  • 49
    • 34547598476 scopus 로고    scopus 로고
    • Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat
    • COI: 1:CAS:528:DC%2BD2sXotlKitbo%3D, PID: 17667571
    • Alkire MT, McReynolds JR, Hahn EL, et al. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;107:264–72. DOI: 10.1097/01.anes.0000270741.33766.24
    • (2007) Anesthesiology , vol.107 , pp. 264-272
    • Alkire, M.T.1    McReynolds, J.R.2    Hahn, E.L.3
  • 50
    • 77955095177 scopus 로고    scopus 로고
    • Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats
    • COI: 1:CAS:528:DC%2BC3cXpsVajtbc%3D, PID: 20495137
    • Gamou S, Fukuda S, Ogura M, et al. Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats. Anesth Analg. 2010;111:395–402. DOI: 10.1213/ANE.0b013e3181e24776
    • (2010) Anesth Analg , vol.111 , pp. 395-402
    • Gamou, S.1    Fukuda, S.2    Ogura, M.3
  • 51
    • 79959497982 scopus 로고    scopus 로고
    • Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia
    • COI: 1:CAS:528:DC%2BC3MXnvVaktL8%3D, PID: 21562401
    • Luo T, Leung LS. Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology. 2011;115:36–43. DOI: 10.1097/ALN.0b013e3182207655
    • (2011) Anesthesiology , vol.115 , pp. 36-43
    • Luo, T.1    Leung, L.S.2
  • 52
    • 60849097577 scopus 로고    scopus 로고
    • The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse
    • COI: 1:CAS:528:DC%2BD1MXisV2hu70%3D, PID: 19228970
    • Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci. 2009;29:2177–87. DOI: 10.1523/JNEUROSCI.4997-08.2009
    • (2009) J Neurosci , vol.29 , pp. 2177-2187
    • Zecharia, A.Y.1    Nelson, L.E.2    Gent, T.C.3
  • 53
    • 84866406441 scopus 로고    scopus 로고
    • GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness
    • Mice with genetically deficient GABA neurons were more excitable and were insensitive to the anesthetic propofol in vitro; however, the deficiency had no effect on the propofol-induced LORR. Histaminergic TMN may not have a central role in anesthesia
    • •• Zecharia AY, Yu X, Gotz T, et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci. 2012;32:13062–75. Mice with genetically deficient GABA neurons were more excitable and were insensitive to the anesthetic propofol in vitro; however, the deficiency had no effect on the propofol-induced LORR. Histaminergic TMN may not have a central role in anesthesia.
    • (2012) J Neurosci , vol.32 , pp. 13062-13075
    • Zecharia, A.Y.1    Yu, X.2    Gotz, T.3
  • 54
    • 27644457084 scopus 로고    scopus 로고
    • Hypothalamic regulation of sleep and circadian rhythms
    • COI: 1:CAS:528:DC%2BD2MXhtFCrurrP, PID: 16251950
    • Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63. DOI: 10.1038/nature04284
    • (2005) Nature , vol.437 , pp. 1257-1263
    • Saper, C.B.1    Scammell, T.E.2    Lu, J.3
  • 55
    • 0026612362 scopus 로고
    • The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum
    • COI: 1:CAS:528:DyaK38XitVygsro%3D, PID: 1312132
    • Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci. 1992;12:1063–76.
    • (1992) J Neurosci , vol.12 , pp. 1063-1076
    • Laurie, D.J.1    Seeburg, P.H.2    Wisden, W.3
  • 56
    • 0026615268 scopus 로고
    • The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development
    • COI: 1:CAS:528:DyaK3sXhs1Okuw%3D%3D, PID: 1331359
    • Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12:4151–72.
    • (1992) J Neurosci , vol.12 , pp. 4151-4172
    • Laurie, D.J.1    Wisden, W.2    Seeburg, P.H.3
  • 57
    • 0026612363 scopus 로고
    • The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon
    • COI: 1:CAS:528:DyaK38XisV2juro%3D, PID: 1312131
    • Wisden W, Laurie DJ, Monyer H, et al. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992;12:1040–62.
    • (1992) J Neurosci , vol.12 , pp. 1040-1062
    • Wisden, W.1    Laurie, D.J.2    Monyer, H.3
  • 58
    • 84863791625 scopus 로고    scopus 로고
    • Conscious processing: Implications for general anesthesia
    • Preferential inhibition of global feedback (from frontal to parietal) connectivity by general anesthetics through the GABA receptors is considered one of the key mechanisms whereby anesthetics induce LOC
    • • Changeux JP. Conscious processing: implications for general anesthesia. Curr Opin Anaesthesiol. 2012;25:397–404. Preferential inhibition of global feedback (from frontal to parietal) connectivity by general anesthetics through the GABA receptors is considered one of the key mechanisms whereby anesthetics induce LOC.
    • (2012) Curr Opin Anaesthesiol , vol.25 , pp. 397-404
    • Changeux, J.P.1
  • 59
    • 34447320197 scopus 로고    scopus 로고
    • Correlating the clinical actions and molecular mechanisms of general anesthetics
    • PID: 17620835
    • Solt K, Forman SA. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol. 2007;20:300–6. DOI: 10.1097/ACO.0b013e32816678a5
    • (2007) Curr Opin Anaesthesiol , vol.20 , pp. 300-306
    • Solt, K.1    Forman, S.A.2
  • 60
    • 84875424532 scopus 로고    scopus 로고
    • New insights into the classification and nomenclature of cortical GABAergic interneurons
    • COI: 1:CAS:528:DC%2BC3sXitVGgt7w%3D, PID: 23385869
    • DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202–16. DOI: 10.1038/nrn3444
    • (2013) Nat Rev Neurosci , vol.14 , pp. 202-216
    • DeFelipe, J.1    Lopez-Cruz, P.L.2    Benavides-Piccione, R.3
  • 61
    • 77249083662 scopus 로고    scopus 로고
    • Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness
    • COI: 1:CAS:528:DC%2BC3cXit1Sku7s%3D, PID: 20133802
    • Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;107:2681–6. DOI: 10.1073/pnas.0913008107
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 2681-2686
    • Ferrarelli, F.1    Massimini, M.2    Sarasso, S.3
  • 62
    • 84864286556 scopus 로고    scopus 로고
    • Mapping sensorimotor cortex with slow cortical potential resting-state networks while awake and under anesthesia
    • PID: 22517255, discussion 316
    • Breshears JD, Gaona CM, Roland JL, et al. Mapping sensorimotor cortex with slow cortical potential resting-state networks while awake and under anesthesia. Neurosurgery. 2012;71:305–16 discussion 316. DOI: 10.1227/NEU.0b013e318258e5d1
    • (2012) Neurosurgery , vol.71 , pp. 305-316
    • Breshears, J.D.1    Gaona, C.M.2    Roland, J.L.3
  • 63
    • 78650474059 scopus 로고    scopus 로고
    • Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia
    • COI: 1:CAS:528:DC%2BC3cXhsFyls7bM, PID: 21078987
    • Breshears JD, Roland JL, Sharma M, et al. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci USA. 2010;107:21170–5. DOI: 10.1073/pnas.1011949107
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 21170-21175
    • Breshears, J.D.1    Roland, J.L.2    Sharma, M.3
  • 64
    • 38349014090 scopus 로고    scopus 로고
    • Losing inhibition with ketamine
    • COI: 1:CAS:528:DC%2BD1cXnt1Cmtw%3D%3D, PID: 18202677
    • Seamans J. Losing inhibition with ketamine. Nat Chem Biol. 2008;4:91–3. DOI: 10.1038/nchembio0208-91
    • (2008) Nat Chem Biol , vol.4 , pp. 91-93
    • Seamans, J.1
  • 65
    • 39049114191 scopus 로고    scopus 로고
    • Ketamine
    • Schuttler J, Schwilden H, (eds), Springer, Heidelberg
    • Sinner B, Graf BM. Ketamine. In: Schuttler J, Schwilden H, editors. Handbook of experimental pharmacology, vol. 182. Heidelberg: Springer; 2008. p. 313–33.
    • (2008) Handbook of experimental pharmacology , vol.182 , pp. 313-333
    • Sinner, B.1    Graf, B.M.2
  • 66
    • 45549096136 scopus 로고    scopus 로고
    • Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits
    • COI: 1:CAS:528:DC%2BD1cXmt1Sltb8%3D, PID: 18480294
    • Hevers W, Hadley SH, Luddens H, et al. Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci. 2008;28:5383–93. DOI: 10.1523/JNEUROSCI.5443-07.2008
    • (2008) J Neurosci , vol.28 , pp. 5383-5393
    • Hevers, W.1    Hadley, S.H.2    Luddens, H.3
  • 67
    • 84876440062 scopus 로고    scopus 로고
    • Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states
    • COI: 1:CAS:528:DC%2BC3sXntVWjt7k%3D, PID: 23620827
    • Furutani N, Hondo M, Kageyama H, et al. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One. 2013;8:e62391. DOI: 10.1371/journal.pone.0062391
    • (2013) PLoS One , vol.8
    • Furutani, N.1    Hondo, M.2    Kageyama, H.3
  • 68
    • 79955777621 scopus 로고    scopus 로고
    • Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep
    • COI: 1:CAS:528:DC%2BC3MXls1Oltrs%3D, PID: 21525292
    • Mieda M, Hasegawa E, Kisanuki YY, et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31:6518–26. DOI: 10.1523/JNEUROSCI.6506-10.2011
    • (2011) J Neurosci , vol.31 , pp. 6518-6526
    • Mieda, M.1    Hasegawa, E.2    Kisanuki, Y.Y.3
  • 69
    • 84883441101 scopus 로고    scopus 로고
    • Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation
    • COI: 1:CAS:528:DC%2BC3sXhsVenurfE, PID: 24005305
    • Soya S, Shoji H, Hasegawa E, et al. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci. 2013;33:14549–57. DOI: 10.1523/JNEUROSCI.1130-13.2013
    • (2013) J Neurosci , vol.33 , pp. 14549-14557
    • Soya, S.1    Shoji, H.2    Hasegawa, E.3
  • 70
    • 84855479864 scopus 로고    scopus 로고
    • Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain
    • COI: 1:CAS:528:DC%2BC38XlsFSlug%3D%3D, PID: 21963829
    • Kornum BR, Faraco J, Mignot E. Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Curr Opin Neurobiol. 2011;21:897–903. DOI: 10.1016/j.conb.2011.09.003
    • (2011) Curr Opin Neurobiol , vol.21 , pp. 897-903
    • Kornum, B.R.1    Faraco, J.2    Mignot, E.3
  • 71
    • 0344420403 scopus 로고    scopus 로고
    • Orexin A elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats
    • COI: 1:CAS:528:DC%2BD2cXkvFaqsw%3D%3D, PID: 14633539
    • Yasuda Y, Takeda A, Fukuda S, et al. Orexin A elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats. Anesth Analg. 2003;97:1663–6. DOI: 10.1213/01.ANE.0000089964.85834.EF
    • (2003) Anesth Analg , vol.97 , pp. 1663-1666
    • Yasuda, Y.1    Takeda, A.2    Fukuda, S.3
  • 72
    • 84886933304 scopus 로고    scopus 로고
    • In vitro and in vivo pharmacological characterization of the novel neuropeptide S receptor ligands QA1 and PI1
    • Camarda V, Ruzza C, Rizzi A, et al. In vitro and in vivo pharmacological characterization of the novel neuropeptide S receptor ligands QA1 and PI1. Peptides. 2013;48C:27–35. DOI: 10.1016/j.peptides.2013.07.018
    • (2013) Peptides , vol.48C , pp. 27-35
    • Camarda, V.1    Ruzza, C.2    Rizzi, A.3
  • 73
    • 79953169084 scopus 로고    scopus 로고
    • The effects of neuropeptide S on general anesthesia in rats
    • COI: 1:CAS:528:DC%2BC3MXjslKrtr8%3D, PID: 21288975
    • Kushikata T, Yoshida H, Kudo M, et al. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg. 2011;112:845–9. DOI: 10.1213/ANE.0b013e31820b990d
    • (2011) Anesth Analg , vol.112 , pp. 845-849
    • Kushikata, T.1    Yoshida, H.2    Kudo, M.3
  • 74
    • 85141001718 scopus 로고    scopus 로고
    • Harnessing anesthesia and brain imaging for the study of human consciousness
    • Epub ahead of print
    • Langsjo JW, Revonsuo A, Scheinin H. Harnessing anesthesia and brain imaging for the study of human consciousness. Curr Pharm Des. 2013 [Epub ahead of print].
    • (2013) Curr Pharm Des
    • Langsjo, J.W.1    Revonsuo, A.2    Scheinin, H.3
  • 75
    • 84870346734 scopus 로고    scopus 로고
    • Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain
    • PID: 22905821
    • Spreng RN, Sepulcre J, Turner GR, et al. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci. 2013;25:74–86. DOI: 10.1162/jocn_a_00281
    • (2013) J Cogn Neurosci , vol.25 , pp. 74-86
    • Spreng, R.N.1    Sepulcre, J.2    Turner, G.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.