메뉴 건너뛰기




Volumn 174, Issue , 2016, Pages 121-133

RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM

Author keywords

Indoor positioning; Manufacturing execution system (MES); Online sequential extreme learning machine (OS ELM); Real time signal processing; RFID; Smart manufacturing objects (SMOs)

Indexed keywords

DATA ACQUISITION; DATA HANDLING; E-LEARNING; FLOORS; FLOW CONTROL; INDOOR POSITIONING SYSTEMS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; MANUFACTURE; PROCESSING; RADIO FREQUENCY IDENTIFICATION (RFID); SIGNAL PROCESSING; SOCIAL NETWORKING (ONLINE);

EID: 84940061454     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.05.120     Document Type: Article
Times cited : (73)

References (38)
  • 1
    • 84864536605 scopus 로고    scopus 로고
    • Constraint-based adaptive shape deformation technology for customised product development
    • Yang Z., Wong P.K., Vong C.M., Lo K.M. Constraint-based adaptive shape deformation technology for customised product development. Int. J. Mater. Prod. Technol. 2012, 44:1-16.
    • (2012) Int. J. Mater. Prod. Technol. , vol.44 , pp. 1-16
    • Yang, Z.1    Wong, P.K.2    Vong, C.M.3    Lo, K.M.4
  • 2
    • 33947222480 scopus 로고    scopus 로고
    • A service-oriented architecture for mass customization-a shoe industry case study
    • Dietrich A.J., Kirn S., Sugumaran V. A service-oriented architecture for mass customization-a shoe industry case study. IEEE Trans. Eng. Manage. 2007, 54:190-204.
    • (2007) IEEE Trans. Eng. Manage. , vol.54 , pp. 190-204
    • Dietrich, A.J.1    Kirn, S.2    Sugumaran, V.3
  • 4
    • 43549123473 scopus 로고    scopus 로고
    • A holonic approach for manufacturing execution system design: an industrial application
    • Blanc P., Demongodin I., Castagna P. A holonic approach for manufacturing execution system design: an industrial application. Eng. Appl. Artif. Intell. 2008, 21:315-330.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 315-330
    • Blanc, P.1    Demongodin, I.2    Castagna, P.3
  • 5
    • 84947649061 scopus 로고    scopus 로고
    • Modeling of RFID-enabled real-time manufacturing execution system in mixed-model assembly lines
    • Yang Z., Xu W., Wong P.K., Wang X. Modeling of RFID-enabled real-time manufacturing execution system in mixed-model assembly lines. Math. Prob. Eng. 2014, 2014:1-16. Article ID 575402.
    • (2014) Math. Prob. Eng. , vol.2014 , pp. 1-16
    • Yang, Z.1    Xu, W.2    Wong, P.K.3    Wang, X.4
  • 6
    • 82955235534 scopus 로고    scopus 로고
    • A review of RFID technology and its managerial applications in different industries
    • Zhu X., Mukhopadhyay S.K., Kurata H. A review of RFID technology and its managerial applications in different industries. J. Eng. Technol. Manage. 2012, 29:152-167.
    • (2012) J. Eng. Technol. Manage. , vol.29 , pp. 152-167
    • Zhu, X.1    Mukhopadhyay, S.K.2    Kurata, H.3
  • 8
    • 84947650404 scopus 로고    scopus 로고
    • A technical and business perspective on wireless sensor network for manufacturing execution system
    • Xu W., Yang Z., Wang X. A technical and business perspective on wireless sensor network for manufacturing execution system. Math. Prob. Eng. 2014, 2014:1-15. Article ID 267195.
    • (2014) Math. Prob. Eng. , vol.2014 , pp. 1-15
    • Xu, W.1    Yang, Z.2    Wang, X.3
  • 9
    • 33947606713 scopus 로고    scopus 로고
    • RFID-based wireless manufacturing for walking-worker assembly islands with fixed-position layouts
    • Huang G.Q., Zhang Y.F., Jiang P.Y. RFID-based wireless manufacturing for walking-worker assembly islands with fixed-position layouts. Rob. Comput. Integr. Manuf. 2007, 23:469-477.
    • (2007) Rob. Comput. Integr. Manuf. , vol.23 , pp. 469-477
    • Huang, G.Q.1    Zhang, Y.F.2    Jiang, P.Y.3
  • 10
    • 84864156107 scopus 로고    scopus 로고
    • RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control
    • Huang G.Q., Zhang Y.F., Chen X., Newman S.T. RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control. J. Intell. Manuf. 2008, 19:701-713.
    • (2008) J. Intell. Manuf. , vol.19 , pp. 701-713
    • Huang, G.Q.1    Zhang, Y.F.2    Chen, X.3    Newman, S.T.4
  • 11
    • 77951096896 scopus 로고    scopus 로고
    • Radio frequency identification system optimisation models for lifecycle of a durable product
    • Osman M.S., Ram B., Stanfield P., Samanlioglu F., Davis L., Bhadury J. Radio frequency identification system optimisation models for lifecycle of a durable product. Int. J. Prod. Res. 2010, 48:2699-2721.
    • (2010) Int. J. Prod. Res. , vol.48 , pp. 2699-2721
    • Osman, M.S.1    Ram, B.2    Stanfield, P.3    Samanlioglu, F.4    Davis, L.5    Bhadury, J.6
  • 12
    • 5544326540 scopus 로고    scopus 로고
    • LANDMARC: indoor location sensing using active RFID
    • Ni L.M., Liu Y., Lau Y.C., Patil A.P. LANDMARC: indoor location sensing using active RFID. Wireless Netw. 2004, 10:701-710.
    • (2004) Wireless Netw. , vol.10 , pp. 701-710
    • Ni, L.M.1    Liu, Y.2    Lau, Y.C.3    Patil, A.P.4
  • 13
    • 84973545060 scopus 로고    scopus 로고
    • Adaptive fitting reference frame for 2-D indoor localization based on RFID
    • Yang Z., Chen L. Adaptive fitting reference frame for 2-D indoor localization based on RFID. Int. J. Eng. Technol. 2014, 6:114-118.
    • (2014) Int. J. Eng. Technol. , vol.6 , pp. 114-118
    • Yang, Z.1    Chen, L.2
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 17
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: random neurons, random features and kernels
    • Huang G.-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 2014, 6:376-390.
    • (2014) Cogn. Comput. , vol.6 , pp. 376-390
    • Huang, G.-B.1
  • 19
    • 84935846839 scopus 로고    scopus 로고
    • A Robust AdaBoost.RT based ensemble extreme learning machine
    • Zhang P., Yang Z. A Robust AdaBoost.RT based ensemble extreme learning machine. Math. Prob. Eng. 2015, 2015:13. Article ID 260970.
    • (2015) Math. Prob. Eng. , vol.2015 , pp. 13
    • Zhang, P.1    Yang, Z.2
  • 21
    • 84953360217 scopus 로고    scopus 로고
    • Fast Detection of Impact Location Using Kernel Extreme Learning Machine 2014.
    • H. Fu, C.-M. Vong, P.-K. Wong, Z. Yang, Fast Detection of Impact Location Using Kernel Extreme Learning Machine 2014.
    • Fu, H.1    Vong, C.-M.2    Wong, P.-K.3    Yang, Z.4
  • 22
    • 9244257332 scopus 로고    scopus 로고
    • Magnified gradient function with deterministic weight modification in adaptive learning
    • Ng S.-C., Cheung C.-C., Leung S.-H. Magnified gradient function with deterministic weight modification in adaptive learning. IEEE Trans. Neural Netw. 2004, 15:1411-1423.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 1411-1423
    • Ng, S.-C.1    Cheung, C.-C.2    Leung, S.-H.3
  • 23
    • 34249753618 scopus 로고
    • Support-vector networks
    • 1995/09/01
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297. 1995/09/01.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 84863018930 scopus 로고    scopus 로고
    • ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI
    • Huang C.-N., Chan C.-T. ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI. Procedia Comput. Sci. 2011, 5:58-65.
    • (2011) Procedia Comput. Sci. , vol.5 , pp. 58-65
    • Huang, C.-N.1    Chan, C.-T.2
  • 27
    • 77953887431 scopus 로고    scopus 로고
    • An improved RFID-based locating algorithm by eliminating diversity of active tags for indoor environment
    • Zhang T., Chen Z., Ouyang Y., Hao J., Xiong Z. An improved RFID-based locating algorithm by eliminating diversity of active tags for indoor environment. Comput. J. 2009, 52:902-909.
    • (2009) Comput. J. , vol.52 , pp. 902-909
    • Zhang, T.1    Chen, Z.2    Ouyang, Y.3    Hao, J.4    Xiong, Z.5
  • 29
    • 80051597055 scopus 로고    scopus 로고
    • An OS-ELM based distributed ensemble classification framework in P2P networks
    • Sun Y., Yuan Y., Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011, 74:2438-2443.
    • (2011) Neurocomputing , vol.74 , pp. 2438-2443
    • Sun, Y.1    Yuan, Y.2    Wang, G.3
  • 30
    • 84856329064 scopus 로고    scopus 로고
    • Daily maximum load forecasting of consecutive national holidays using OSELM-based multi-agents system with weighted average strategy
    • Yap K.S., Yap H.J. Daily maximum load forecasting of consecutive national holidays using OSELM-based multi-agents system with weighted average strategy. Neurocomputing 2012, 81:108-112.
    • (2012) Neurocomputing , vol.81 , pp. 108-112
    • Yap, K.S.1    Yap, H.J.2
  • 31
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • Nizar A.H., Dong Z.Y., Wang Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 2008, 23:946-955.
    • (2008) IEEE Trans. Power Syst. , vol.23 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3
  • 32
    • 84874020840 scopus 로고    scopus 로고
    • Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets
    • Wang G.Q.H., Feng X.-Q. Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets. Neural Comput. Appl. 2013, 22.
    • (2013) Neural Comput. Appl. , vol.22
    • Wang, G.Q.H.1    Feng, X.-Q.2
  • 33
    • 84874020798 scopus 로고    scopus 로고
    • Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
    • Lim J.-S., Lee S., Pang H.-S. Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations. Neural Comput. Appl. 2013, 22:569-576.
    • (2013) Neural Comput. Appl. , vol.22 , pp. 569-576
    • Lim, J.-S.1    Lee, S.2    Pang, H.-S.3
  • 34
    • 84899926364 scopus 로고    scopus 로고
    • Adaptive control using fully online sequential-extreme learning machine and a case study on engine air-fuel ratio regulation
    • Wong P.K., Vong C.M., Gao X.H., Wong K.I. Adaptive control using fully online sequential-extreme learning machine and a case study on engine air-fuel ratio regulation. Math. Prob. Eng. 2014, 2014.
    • (2014) Math. Prob. Eng. , vol.2014
    • Wong, P.K.1    Vong, C.M.2    Gao, X.H.3    Wong, K.I.4
  • 36
    • 33746371214 scopus 로고    scopus 로고
    • A kernel-based learning approach to ad hoc sensor network localization
    • Nguyen X., Jordan M.I., Sinopoli B. A kernel-based learning approach to ad hoc sensor network localization. ACM Trans. Sens. Netw. 2005, 1:134-152.
    • (2005) ACM Trans. Sens. Netw. , vol.1 , pp. 134-152
    • Nguyen, X.1    Jordan, M.I.2    Sinopoli, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.