-
1
-
-
79959880152
-
On the water waves equations with surface tension
-
Alazard, T., Burq, N., Zuily, C.: On the water waves equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)
-
(2011)
Duke Math. J.
, vol.158
, Issue.3
, pp. 413-499
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
2
-
-
84939913056
-
-
Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves (2012)
-
Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves (2012). arXiv:1212.0626
-
-
-
-
4
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math. 58(10), 1287–1315 (2005)
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, Issue.10
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
5
-
-
0032136390
-
On the Cauchy problem for a capillary drop. I. Irrotational motion
-
Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183 (1998)
-
(1998)
Math. Methods Appl. Sci.
, vol.21
, Issue.12
, pp. 1149-1183
-
-
Beyer, K.1
Günther, M.2
-
6
-
-
84884318144
-
Finite time singularities for the free boundary incompressible Euler equations
-
Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. of Math. 178, 1061–1134 (2013)
-
(2013)
Ann. of Math.
, vol.178
, pp. 1061-1134
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
Gómez-Serrano, J.5
-
7
-
-
84857721683
-
Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves
-
Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M.: Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175, 909–948 (2012)
-
(2012)
Ann. Math
, vol.175
, pp. 909-948
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
López-Fernández, M.5
-
8
-
-
78049501969
-
Strichartz estimates for the water-wave problem with surface tension
-
Christianson, H., Hur, V., Staffilani, G.: Strichartz estimates for the water-wave problem with surface tension. Comm. Partial Differ. Equ. 35(12), 2195–2252 (2010)
-
(2010)
Comm. Partial Differ. Equ.
, vol.35
, Issue.12
, pp. 2195-2252
-
-
Christianson, H.1
Hur, V.2
Staffilani, G.3
-
9
-
-
0034368951
-
On the motion of the free surface of a liquid
-
Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)
-
(2000)
Commun. Pure Appl. Math.
, vol.53
, Issue.12
, pp. 1536-1602
-
-
Christodoulou, D.1
Lindblad, H.2
-
10
-
-
0000410847
-
L’intégrale de Cauchy définit un opérateur borné sur (Formula presented.) pour les courbes lipschitziennes [The Cauchy integral defines a bounded operator on (Formula presented.) for Lipschitz curves]
-
Coifman, R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur $$L^2$$L2 pour les courbes lipschitziennes [The Cauchy integral defines a bounded operator on $$L^2$$L2 for Lipschitz curves]. Ann. Math. 116(2), 361–387 (1982)
-
(1982)
Ann. Math.
, vol.116
, Issue.2
, pp. 361-387
-
-
Coifman, R.1
McIntosh, A.2
Meyer, Y.3
-
11
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)
-
(2007)
J. Am. Math. Soc.
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
12
-
-
84891662791
-
On the finite-time splash and splat singularities for the 3-D free-surface Euler equations
-
Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325, 143–183 (2014)
-
(2014)
Commun. Math. Phys.
, vol.325
, pp. 143-183
-
-
Coutand, D.1
Shkoller, S.2
-
13
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differ. Equ. 10(8), 787–1003 (1985)
-
(1985)
Comm. Partial Differ. Equ.
, vol.10
, Issue.8
, pp. 787-1003
-
-
Craig, W.1
-
14
-
-
0002686768
-
Numerical simulation of gravity waves
-
Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comp. Phys. 108, 73–83 (1993)
-
(1993)
J. Comp. Phys.
, vol.108
, pp. 73-83
-
-
Craig, W.1
Sulem, C.2
-
15
-
-
0001525213
-
A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation
-
Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)
-
(1993)
Ann. Math.
, vol.137
, Issue.2
, pp. 295-368
-
-
Deift, P.1
Zhou, X.2
-
16
-
-
0038336602
-
Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space
-
Deift, P., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 56(8), 1029–1077 (2003)
-
(2003)
Commun. Pure Appl. Math.
, vol.56
, Issue.8
, pp. 1029-1077
-
-
Deift, P.1
Zhou, X.2
-
17
-
-
0042238363
-
Existence globale et comportement asymptotique pour l’ équation de Klein-Gordon quasi-linéaire à données petites en dimension 1
-
Delort, J.M.: Existence globale et comportement asymptotique pour l’ équation de Klein-Gordon quasi-linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. 34, 1–61 (2001)
-
(2001)
Ann. Sci. École Norm. Sup.
, vol.34
, pp. 1-61
-
-
Delort, J.M.1
-
18
-
-
67650765274
-
Global solutions for 3-d quadratic Schrödinger equations
-
Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3-d quadratic Schrödinger equations. Int. Math. Res. Notices 3, 414–432 (2009)
-
(2009)
Int. Math. Res. Notices
, vol.3
, pp. 414-432
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
19
-
-
84857870242
-
Global solutions for the gravity surface water waves equation in dimension 3
-
Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity surface water waves equation in dimension 3. Ann. Math. 175(2), 691–754 (2012)
-
(2012)
Ann. Math.
, vol.175
, Issue.2
, pp. 691-754
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
20
-
-
84939913057
-
Global solutions for capillary waves equation in dimension 3. Commun. Pure Appl
-
Germain P., Masmoudi, N., Shatah, J.: Global solutions for capillary waves equation in dimension 3. Commun. Pure Appl. Math. (2014, to appear). arXiv:1210.1601
-
(1601)
Math. (2014, to appear). arXiv
, pp. 1210
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
21
-
-
69849094134
-
Scattering for the Gross-Pitaevsky equation in 3 dimensions
-
Gustafson, S., Nakanishi, K., Tsai, T.: Scattering for the Gross-Pitaevsky equation in 3 dimensions. Commun. Contemp. Math. 11(4), 657–707 (2009)
-
(2009)
Commun. Contemp. Math.
, vol.11
, Issue.4
, pp. 657-707
-
-
Gustafson, S.1
Nakanishi, K.2
Tsai, T.3
-
22
-
-
84880506192
-
Scattering for the Zakharov system in three dimensions
-
Hani, Z., Pusateri, F., Shatah, J.: Scattering for the Zakharov system in three dimensions. Commun. Math. Phys. 322(3), 731–753 (2013)
-
(2013)
Commun. Math. Phys.
, vol.322
, Issue.3
, pp. 731-753
-
-
Hani, Z.1
Pusateri, F.2
Shatah, J.3
-
23
-
-
0000462692
-
Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations
-
Hayashi, N., Naumkin, P.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)
-
(1998)
Am. J. Math.
, vol.120
, pp. 369-389
-
-
Hayashi, N.1
Naumkin, P.2
-
24
-
-
0346390508
-
Large time behavior of solutions for the modified Korteweg-de Vries equation
-
Hayashi, N., Naumkin, P.: Large time behavior of solutions for the modified Korteweg-de Vries equation. Int. Math. Res. Not. 8, 395–418 (1999)
-
(1999)
Int. Math. Res. Not
, vol.8
, pp. 395-418
-
-
Hayashi, N.1
Naumkin, P.2
-
25
-
-
84874366854
-
The Euler–Poisson system in 2D: global stability of the constant equilibrium solution
-
Ionescu, A., Pausader, B.: The Euler–Poisson system in 2D: global stability of the constant equilibrium solution. Int. Math. Res. Not. IMRN 2013, 761–826 (2013)
-
(2013)
Int. Math. Res. Not. IMRN
, vol.2013
, pp. 761-826
-
-
Ionescu, A.1
Pausader, B.2
-
27
-
-
84886952212
-
Nonlinear fractional Schrödinger equations in one dimension
-
Ionescu, A., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266(1), 139–176 (2014)
-
(2014)
J. Funct. Anal.
, vol.266
, Issue.1
, pp. 139-176
-
-
Ionescu, A.1
Pusateri, F.2
-
28
-
-
84881028352
-
A new proof of long range scattering for critical nonlinear Schrödinger equations
-
Kato, J., Pusateri, F.: A new proof of long range scattering for critical nonlinear Schrödinger equations. Differ. Int. Equ. 24(9–10), 923–940 (2011)
-
(2011)
Differ. Int. Equ.
, vol.24
, Issue.9-10
, pp. 923-940
-
-
Kato, J.1
Pusateri, F.2
-
29
-
-
84990602599
-
Uniform decay estimates and the Lorentz invariance of the classical wave equation
-
Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 38(3), 321–332 (1985)
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, Issue.3
, pp. 321-332
-
-
Klainerman, S.1
-
30
-
-
0000870142
-
The null condition and global existence for systems of wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M. 1984), pp. 293–326
-
Amer. Math. Soc., Providence:
-
Klainerman, S.: The null condition and global existence for systems of wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), pp. 293–326. In: Lectures in Appl. Math., vol. 23. Amer. Math. Soc., Providence (1986)
-
(1986)
Lectures in Appl. Math., vol
, pp. 23
-
-
Klainerman, S.1
-
31
-
-
22544482964
-
Well-posedness of the water waves equations
-
Lannes, D.: Well-posedness of the water waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)
-
(2005)
J. Am. Math. Soc.
, vol.18
, Issue.3
, pp. 605-654
-
-
Lannes, D.1
-
32
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194 (2005)
-
(2005)
Ann. Math.
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
33
-
-
27844452915
-
A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation
-
Lindblad, H., Soffer, A.: A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation. Lett. Math. Phys. 73(3), 249–258 (2005)
-
(2005)
Lett. Math. Phys.
, vol.73
, Issue.3
, pp. 249-258
-
-
Lindblad, H.1
Soffer, A.2
-
34
-
-
0000306561
-
The Cauchy–Poisson problem. Dinamika Splosn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod
-
Nalimov, V.I.: The Cauchy–Poisson problem. Dinamika Splosn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami 10, 210–254 (1974)
-
(1974)
Granicami
, vol.10
, pp. 210-254
-
-
Nalimov, V.I.1
-
35
-
-
0001366166
-
Long range scattering for nonlinear Schrödinger equations in one space dimension
-
Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139(3), 479–493 (1991)
-
(1991)
Commun. Math. Phys.
, vol.139
, Issue.3
, pp. 479-493
-
-
Ozawa, T.1
-
36
-
-
84881023008
-
Space-time resonances and the null condition for first order systems of wave equations
-
Pusateri, F., Shatah, J.: Space-time resonances and the null condition for first order systems of wave equations. Commun. Pure Appl. Math. 66(10), 1495–1540 (2013)
-
(2013)
Commun. Pure Appl. Math.
, vol.66
, Issue.10
, pp. 1495-1540
-
-
Pusateri, F.1
Shatah, J.2
-
37
-
-
84990623722
-
Normal forms and quadratic nonlinear Klein-Gordon equations
-
Shatah, J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math. 38(5), 685–696 (1985)
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, Issue.5
, pp. 685-696
-
-
Shatah, J.1
-
38
-
-
52349104032
-
Geometry and a priori estimates for free boundary problems of the Euler equation
-
Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)
-
(2008)
Commun. Pure Appl. Math.
, vol.61
, Issue.5
, pp. 698-744
-
-
Shatah, J.1
Zeng, C.2
-
39
-
-
78751704957
-
Local well-posedness for the fluid interface problem
-
Shatah, J., Zeng, C.: Local well-posedness for the fluid interface problem. Arch. Rational. Mech. Anal. 199(2), 653–705 (2011)
-
(2011)
Arch. Rational. Mech. Anal.
, vol.199
, Issue.2
, pp. 653-705
-
-
Shatah, J.1
Zeng, C.2
-
40
-
-
0003230098
-
The nonlinear Schrödinger equation. Self-focussing and wave collapse
-
Springer, New York:
-
Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Self-focussing and wave collapse. In: Applied Mathematical Sciences, vol. 139. Springer, New York (1999)
-
(1999)
Applied Mathematical Sciences, vol
, pp. 139
-
-
Sulem, C.1
Sulem, P.L.2
-
41
-
-
84863279498
-
A rigorous justification of the modulation approximation to the 2D full water wave problem
-
Totz, N., Wu, S.: A rigorous justification of the modulation approximation to the 2D full water wave problem. Commun. Math. Phys. 310(3), 817–883 (2012)
-
(2012)
Commun. Math. Phys.
, vol.310
, Issue.3
, pp. 817-883
-
-
Totz, N.1
Wu, S.2
-
42
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)
-
(1982)
Publ. Res. Inst. Math. Sci.
, vol.18
, Issue.1
, pp. 49-96
-
-
Yosihara, H.1
-
43
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-d
-
Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-d. Invent. Math. 130(1), 39–72 (1997)
-
(1997)
Invent. Math
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
44
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-d
-
Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-d. J. Am. Math. Soc. 12(2), 445–495 (1999)
-
(1999)
J. Am. Math. Soc.
, vol.12
, Issue.2
, pp. 445-495
-
-
Wu, S.1
-
45
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)
-
(2009)
Invent. Math.
, vol.177
, Issue.1
, pp. 45-135
-
-
Wu, S.1
-
46
-
-
79952989811
-
Global wellposedness of the 3-D full water wave problem
-
Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)
-
(2011)
Invent. Math.
, vol.184
, Issue.1
, pp. 125-220
-
-
Wu, S.1
|