메뉴 건너뛰기




Volumn 266, Issue 1, 2014, Pages 139-176

Nonlinear fractional Schrödinger equations in one dimension

Author keywords

Global regularity; Modified scattering

Indexed keywords


EID: 84886952212     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1016/j.jfa.2013.08.027     Document Type: Article
Times cited : (214)

References (30)
  • 1
    • 0001240303 scopus 로고
    • Non-existence of asymptotically free solutions for nonlinear Schrödinger equation
    • Barab J.E. Non-existence of asymptotically free solutions for nonlinear Schrödinger equation. J. Math. Phys. 1984, 25(11):3270-3273.
    • (1984) J. Math. Phys. , vol.25 , Issue.11 , pp. 3270-3273
    • Barab, J.E.1
  • 2
    • 84990602498 scopus 로고
    • Global solutions of nonlinear hyperbolic equations for small initial data
    • Christodoulou D. Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math. 1986, 39(2):267-282.
    • (1986) Comm. Pure Appl. Math. , vol.39 , Issue.2 , pp. 267-282
    • Christodoulou, D.1
  • 3
    • 0007037433 scopus 로고    scopus 로고
    • Birkhoff normal forms for water waves
    • Amer. Math. Soc., Providence, RI, Mathematical Problems in the Theory of Water Waves
    • Craig W. Birkhoff normal forms for water waves. Contemp. Math. 1996, vol. 200:57-74. Amer. Math. Soc., Providence, RI.
    • (1996) Contemp. Math. , vol.200 , pp. 57-74
    • Craig, W.1
  • 4
    • 0000944690 scopus 로고
    • An integrable normal form for water waves in infinite depth
    • Craig W., Worfolk P. An integrable normal form for water waves in infinite depth. Phys. D 1995, 84(3-4):513-531.
    • (1995) Phys. D , vol.84 , Issue.3-4 , pp. 513-531
    • Craig, W.1    Worfolk, P.2
  • 5
    • 33744814934 scopus 로고    scopus 로고
    • Existence globale et comportement asymptotique pour l' équation de Klein-Gordon quasi-linéaire à données petites en dimension 1
    • Erratum: "Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1"
    • Delort J.M. Existence globale et comportement asymptotique pour l' équation de Klein-Gordon quasi-linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. (4). Ann. Sci. École Norm. Sup. (4) 2006, 39(2):335-345. Erratum: "Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1".
    • (2006) Ann. Sci. École Norm. Sup. (4). Ann. Sci. École Norm. Sup. (4) , vol.39 , Issue.2 , pp. 335-345
    • Delort, J.M.1
  • 6
    • 67650765274 scopus 로고    scopus 로고
    • Global solutions for quadratic Schrödinger equations in dimension 3
    • Germain P., Masmoudi N., Shatah J. Global solutions for quadratic Schrödinger equations in dimension 3. Int. Math. Res. Not. IMRN 2009, 2009(3):414-432.
    • (2009) Int. Math. Res. Not. IMRN , vol.2009 , Issue.3 , pp. 414-432
    • Germain, P.1    Masmoudi, N.2    Shatah, J.3
  • 7
    • 84857870242 scopus 로고    scopus 로고
    • Global solutions for the gravity surface water waves equation in dimension 3
    • Germain P., Masmoudi N., Shatah J. Global solutions for the gravity surface water waves equation in dimension 3. Ann. of Math. 2012, 175(2):691-754.
    • (2012) Ann. of Math. , vol.175 , Issue.2 , pp. 691-754
    • Germain, P.1    Masmoudi, N.2    Shatah, J.3
  • 8
    • 0001232403 scopus 로고
    • On the existence of the wave operators for a class of nonlinear Schrödinger equations
    • Ginibre J., Ozawa T., Velo G. On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 1994, 60(2):211-239.
    • (1994) Ann. Inst. H. Poincaré Phys. Théor. , vol.60 , Issue.2 , pp. 211-239
    • Ginibre, J.1    Ozawa, T.2    Velo, G.3
  • 9
    • 78650272195 scopus 로고    scopus 로고
    • Global well-posedness for the fractional nonlinear Schrödinger equation
    • Guo B., Huo Z. Global well-posedness for the fractional nonlinear Schrödinger equation. Comm. Partial Differential Equations 2011, 36(2):247-255.
    • (2011) Comm. Partial Differential Equations , vol.36 , Issue.2 , pp. 247-255
    • Guo, B.1    Huo, Z.2
  • 10
    • 0000462692 scopus 로고    scopus 로고
    • Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations
    • Hayashi N., Naumkin P.I. Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Amer. J. Math. 1998, 120(2):369-389.
    • (1998) Amer. J. Math. , vol.120 , Issue.2 , pp. 369-389
    • Hayashi, N.1    Naumkin, P.I.2
  • 11
    • 22444453623 scopus 로고    scopus 로고
    • Large time asymptotics of solutions to the generalized Benjamin-Ono equation
    • Hayashi N., Naumkin P. Large time asymptotics of solutions to the generalized Benjamin-Ono equation. Trans. Amer. Math. Soc. 1999, 351(1):109-130.
    • (1999) Trans. Amer. Math. Soc. , vol.351 , Issue.1 , pp. 109-130
    • Hayashi, N.1    Naumkin, P.2
  • 12
    • 0346390508 scopus 로고    scopus 로고
    • Large time behavior of solutions for the modified Korteweg-de Vries equation
    • Hayashi N., Naumkin P. Large time behavior of solutions for the modified Korteweg-de Vries equation. Int. Math. Res. Not. IMRN 1999, 1999(8):395-418.
    • (1999) Int. Math. Res. Not. IMRN , vol.1999 , Issue.8 , pp. 395-418
    • Hayashi, N.1    Naumkin, P.2
  • 13
    • 58349100446 scopus 로고    scopus 로고
    • Asymptotics of odd solutions for cubic nonlinear Schrödinger equations
    • Hayashi N., Naumkin P. Asymptotics of odd solutions for cubic nonlinear Schrödinger equations. J. Differential Equations 2009, 246(4):1703-1722.
    • (2009) J. Differential Equations , vol.246 , Issue.4 , pp. 1703-1722
    • Hayashi, N.1    Naumkin, P.2
  • 14
    • 84886952338 scopus 로고    scopus 로고
    • Global solutions for the gravity water waves system in 2D, Preprint
    • A. Ionescu, F. Pusateri, Global solutions for the gravity water waves system in 2D, Preprint, 2013.
    • (2013)
    • Ionescu, A.1    Pusateri, F.2
  • 15
    • 0000774996 scopus 로고
    • Blow-up of solutions of nonlinear wave equations in three space dimensions
    • John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 1979, 28(1-3):235-268.
    • (1979) Manuscripta Math. , vol.28 , Issue.1-3 , pp. 235-268
    • John, F.1
  • 16
    • 84881028352 scopus 로고    scopus 로고
    • A new proof of long range scattering for critical nonlinear Schrödinger equations
    • Kato J., Pusateri F. A new proof of long range scattering for critical nonlinear Schrödinger equations. Differential Integral Equations 2011, 24(9-10):923-940.
    • (2011) Differential Integral Equations , vol.24 , Issue.9-10 , pp. 923-940
    • Kato, J.1    Pusateri, F.2
  • 17
    • 84990602599 scopus 로고
    • Uniform decay estimates and the Lorentz invariance of the classical wave equation
    • Klainerman S. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 1985, 38(3):321-332.
    • (1985) Comm. Pure Appl. Math. , vol.38 , Issue.3 , pp. 321-332
    • Klainerman, S.1
  • 18
    • 0000870142 scopus 로고
    • The null condition and global existence to nonlinear wave equations
    • Amer. Math. Soc., Providence, RI, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1
    • Klainerman S. The null condition and global existence to nonlinear wave equations. Lectures in Appl. Math. 1986, vol. 23:293-326. Amer. Math. Soc., Providence, RI.
    • (1986) Lectures in Appl. Math. , vol.23 , pp. 293-326
    • Klainerman, S.1
  • 19
    • 22544482964 scopus 로고    scopus 로고
    • Well-posedness of the water waves equations
    • Lannes D. Well-posedness of the water waves equations. J. Amer. Math. Soc. 2005, 18(3):605-654.
    • (2005) J. Amer. Math. Soc. , vol.18 , Issue.3 , pp. 605-654
    • Lannes, D.1
  • 20
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • 7 pp
    • Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66(5):056108. 7 pp.
    • (2002) Phys. Rev. E , vol.66 , Issue.5 , pp. 056108
    • Laskin, N.1
  • 21
    • 26044448758 scopus 로고    scopus 로고
    • Well-posedness for the motion of an incompressible liquid with free surface boundary
    • Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. 2005, 162(1):109-194.
    • (2005) Ann. of Math. , vol.162 , Issue.1 , pp. 109-194
    • Lindblad, H.1
  • 22
    • 0035541229 scopus 로고    scopus 로고
    • Asymptotically-free solutions for the short-range nonlinear Schrödinger equation
    • Nakanishi K. Asymptotically-free solutions for the short-range nonlinear Schrödinger equation. SIAM J. Math. Anal. 2001, 32(6):1265-1271.
    • (2001) SIAM J. Math. Anal. , vol.32 , Issue.6 , pp. 1265-1271
    • Nakanishi, K.1
  • 23
    • 0001366166 scopus 로고
    • Long range scattering for nonlinear Schrödinger equations in one space dimension
    • Ozawa T. Long range scattering for nonlinear Schrödinger equations in one space dimension. Comm. Math. Phys. 1991, 139(3):479-493.
    • (1991) Comm. Math. Phys. , vol.139 , Issue.3 , pp. 479-493
    • Ozawa, T.1
  • 24
    • 84990623722 scopus 로고
    • Normal forms and quadratic nonlinear Klein-Gordon equations
    • Shatah J. Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math. 1985, 38(5):685-696.
    • (1985) Comm. Pure Appl. Math. , vol.38 , Issue.5 , pp. 685-696
    • Shatah, J.1
  • 25
    • 78751704957 scopus 로고    scopus 로고
    • Local well-posedness for the fluid interface problem
    • Shatah J., Zeng C. Local well-posedness for the fluid interface problem. Arch. Ration. Mech. Anal. 2011, 199(2):653-705.
    • (2011) Arch. Ration. Mech. Anal. , vol.199 , Issue.2 , pp. 653-705
    • Shatah, J.1    Zeng, C.2
  • 27
    • 0031506263 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 2-D
    • Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 1997, 130(1):39-72.
    • (1997) Invent. Math. , vol.130 , Issue.1 , pp. 39-72
    • Wu, S.1
  • 28
    • 0033446356 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 3-D
    • Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 1999, 12(2):445-495.
    • (1999) J. Amer. Math. Soc. , vol.12 , Issue.2 , pp. 445-495
    • Wu, S.1
  • 29
    • 67650433790 scopus 로고    scopus 로고
    • Almost global wellposedness of the 2-D full water wave problem
    • Wu S. Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 2009, 177(1):45-135.
    • (2009) Invent. Math. , vol.177 , Issue.1 , pp. 45-135
    • Wu, S.1
  • 30
    • 79952989811 scopus 로고    scopus 로고
    • Global wellposedness of the 3-D full water wave problem
    • Wu S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 2011, 184(1):125-220.
    • (2011) Invent. Math. , vol.184 , Issue.1 , pp. 125-220
    • Wu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.