-
1
-
-
0001240303
-
Non-existence of asymptotically free solutions for nonlinear Schrödinger equation
-
Barab J.E. Non-existence of asymptotically free solutions for nonlinear Schrödinger equation. J. Math. Phys. 1984, 25(11):3270-3273.
-
(1984)
J. Math. Phys.
, vol.25
, Issue.11
, pp. 3270-3273
-
-
Barab, J.E.1
-
2
-
-
84990602498
-
Global solutions of nonlinear hyperbolic equations for small initial data
-
Christodoulou D. Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math. 1986, 39(2):267-282.
-
(1986)
Comm. Pure Appl. Math.
, vol.39
, Issue.2
, pp. 267-282
-
-
Christodoulou, D.1
-
3
-
-
0007037433
-
Birkhoff normal forms for water waves
-
Amer. Math. Soc., Providence, RI, Mathematical Problems in the Theory of Water Waves
-
Craig W. Birkhoff normal forms for water waves. Contemp. Math. 1996, vol. 200:57-74. Amer. Math. Soc., Providence, RI.
-
(1996)
Contemp. Math.
, vol.200
, pp. 57-74
-
-
Craig, W.1
-
4
-
-
0000944690
-
An integrable normal form for water waves in infinite depth
-
Craig W., Worfolk P. An integrable normal form for water waves in infinite depth. Phys. D 1995, 84(3-4):513-531.
-
(1995)
Phys. D
, vol.84
, Issue.3-4
, pp. 513-531
-
-
Craig, W.1
Worfolk, P.2
-
5
-
-
33744814934
-
Existence globale et comportement asymptotique pour l' équation de Klein-Gordon quasi-linéaire à données petites en dimension 1
-
Erratum: "Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1"
-
Delort J.M. Existence globale et comportement asymptotique pour l' équation de Klein-Gordon quasi-linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. (4). Ann. Sci. École Norm. Sup. (4) 2006, 39(2):335-345. Erratum: "Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1".
-
(2006)
Ann. Sci. École Norm. Sup. (4). Ann. Sci. École Norm. Sup. (4)
, vol.39
, Issue.2
, pp. 335-345
-
-
Delort, J.M.1
-
6
-
-
67650765274
-
Global solutions for quadratic Schrödinger equations in dimension 3
-
Germain P., Masmoudi N., Shatah J. Global solutions for quadratic Schrödinger equations in dimension 3. Int. Math. Res. Not. IMRN 2009, 2009(3):414-432.
-
(2009)
Int. Math. Res. Not. IMRN
, vol.2009
, Issue.3
, pp. 414-432
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
7
-
-
84857870242
-
Global solutions for the gravity surface water waves equation in dimension 3
-
Germain P., Masmoudi N., Shatah J. Global solutions for the gravity surface water waves equation in dimension 3. Ann. of Math. 2012, 175(2):691-754.
-
(2012)
Ann. of Math.
, vol.175
, Issue.2
, pp. 691-754
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
8
-
-
0001232403
-
On the existence of the wave operators for a class of nonlinear Schrödinger equations
-
Ginibre J., Ozawa T., Velo G. On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 1994, 60(2):211-239.
-
(1994)
Ann. Inst. H. Poincaré Phys. Théor.
, vol.60
, Issue.2
, pp. 211-239
-
-
Ginibre, J.1
Ozawa, T.2
Velo, G.3
-
9
-
-
78650272195
-
Global well-posedness for the fractional nonlinear Schrödinger equation
-
Guo B., Huo Z. Global well-posedness for the fractional nonlinear Schrödinger equation. Comm. Partial Differential Equations 2011, 36(2):247-255.
-
(2011)
Comm. Partial Differential Equations
, vol.36
, Issue.2
, pp. 247-255
-
-
Guo, B.1
Huo, Z.2
-
10
-
-
0000462692
-
Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations
-
Hayashi N., Naumkin P.I. Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Amer. J. Math. 1998, 120(2):369-389.
-
(1998)
Amer. J. Math.
, vol.120
, Issue.2
, pp. 369-389
-
-
Hayashi, N.1
Naumkin, P.I.2
-
11
-
-
22444453623
-
Large time asymptotics of solutions to the generalized Benjamin-Ono equation
-
Hayashi N., Naumkin P. Large time asymptotics of solutions to the generalized Benjamin-Ono equation. Trans. Amer. Math. Soc. 1999, 351(1):109-130.
-
(1999)
Trans. Amer. Math. Soc.
, vol.351
, Issue.1
, pp. 109-130
-
-
Hayashi, N.1
Naumkin, P.2
-
12
-
-
0346390508
-
Large time behavior of solutions for the modified Korteweg-de Vries equation
-
Hayashi N., Naumkin P. Large time behavior of solutions for the modified Korteweg-de Vries equation. Int. Math. Res. Not. IMRN 1999, 1999(8):395-418.
-
(1999)
Int. Math. Res. Not. IMRN
, vol.1999
, Issue.8
, pp. 395-418
-
-
Hayashi, N.1
Naumkin, P.2
-
13
-
-
58349100446
-
Asymptotics of odd solutions for cubic nonlinear Schrödinger equations
-
Hayashi N., Naumkin P. Asymptotics of odd solutions for cubic nonlinear Schrödinger equations. J. Differential Equations 2009, 246(4):1703-1722.
-
(2009)
J. Differential Equations
, vol.246
, Issue.4
, pp. 1703-1722
-
-
Hayashi, N.1
Naumkin, P.2
-
14
-
-
84886952338
-
-
Global solutions for the gravity water waves system in 2D, Preprint
-
A. Ionescu, F. Pusateri, Global solutions for the gravity water waves system in 2D, Preprint, 2013.
-
(2013)
-
-
Ionescu, A.1
Pusateri, F.2
-
15
-
-
0000774996
-
Blow-up of solutions of nonlinear wave equations in three space dimensions
-
John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 1979, 28(1-3):235-268.
-
(1979)
Manuscripta Math.
, vol.28
, Issue.1-3
, pp. 235-268
-
-
John, F.1
-
16
-
-
84881028352
-
A new proof of long range scattering for critical nonlinear Schrödinger equations
-
Kato J., Pusateri F. A new proof of long range scattering for critical nonlinear Schrödinger equations. Differential Integral Equations 2011, 24(9-10):923-940.
-
(2011)
Differential Integral Equations
, vol.24
, Issue.9-10
, pp. 923-940
-
-
Kato, J.1
Pusateri, F.2
-
17
-
-
84990602599
-
Uniform decay estimates and the Lorentz invariance of the classical wave equation
-
Klainerman S. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 1985, 38(3):321-332.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, Issue.3
, pp. 321-332
-
-
Klainerman, S.1
-
18
-
-
0000870142
-
The null condition and global existence to nonlinear wave equations
-
Amer. Math. Soc., Providence, RI, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1
-
Klainerman S. The null condition and global existence to nonlinear wave equations. Lectures in Appl. Math. 1986, vol. 23:293-326. Amer. Math. Soc., Providence, RI.
-
(1986)
Lectures in Appl. Math.
, vol.23
, pp. 293-326
-
-
Klainerman, S.1
-
19
-
-
22544482964
-
Well-posedness of the water waves equations
-
Lannes D. Well-posedness of the water waves equations. J. Amer. Math. Soc. 2005, 18(3):605-654.
-
(2005)
J. Amer. Math. Soc.
, vol.18
, Issue.3
, pp. 605-654
-
-
Lannes, D.1
-
20
-
-
41349084761
-
Fractional Schrödinger equation
-
7 pp
-
Laskin N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66(5):056108. 7 pp.
-
(2002)
Phys. Rev. E
, vol.66
, Issue.5
, pp. 056108
-
-
Laskin, N.1
-
21
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. 2005, 162(1):109-194.
-
(2005)
Ann. of Math.
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
22
-
-
0035541229
-
Asymptotically-free solutions for the short-range nonlinear Schrödinger equation
-
Nakanishi K. Asymptotically-free solutions for the short-range nonlinear Schrödinger equation. SIAM J. Math. Anal. 2001, 32(6):1265-1271.
-
(2001)
SIAM J. Math. Anal.
, vol.32
, Issue.6
, pp. 1265-1271
-
-
Nakanishi, K.1
-
23
-
-
0001366166
-
Long range scattering for nonlinear Schrödinger equations in one space dimension
-
Ozawa T. Long range scattering for nonlinear Schrödinger equations in one space dimension. Comm. Math. Phys. 1991, 139(3):479-493.
-
(1991)
Comm. Math. Phys.
, vol.139
, Issue.3
, pp. 479-493
-
-
Ozawa, T.1
-
24
-
-
84990623722
-
Normal forms and quadratic nonlinear Klein-Gordon equations
-
Shatah J. Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math. 1985, 38(5):685-696.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, Issue.5
, pp. 685-696
-
-
Shatah, J.1
-
25
-
-
78751704957
-
Local well-posedness for the fluid interface problem
-
Shatah J., Zeng C. Local well-posedness for the fluid interface problem. Arch. Ration. Mech. Anal. 2011, 199(2):653-705.
-
(2011)
Arch. Ration. Mech. Anal.
, vol.199
, Issue.2
, pp. 653-705
-
-
Shatah, J.1
Zeng, C.2
-
27
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 1997, 130(1):39-72.
-
(1997)
Invent. Math.
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
28
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 1999, 12(2):445-495.
-
(1999)
J. Amer. Math. Soc.
, vol.12
, Issue.2
, pp. 445-495
-
-
Wu, S.1
-
29
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
Wu S. Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 2009, 177(1):45-135.
-
(2009)
Invent. Math.
, vol.177
, Issue.1
, pp. 45-135
-
-
Wu, S.1
-
30
-
-
79952989811
-
Global wellposedness of the 3-D full water wave problem
-
Wu S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 2011, 184(1):125-220.
-
(2011)
Invent. Math.
, vol.184
, Issue.1
, pp. 125-220
-
-
Wu, S.1
|