-
1
-
-
84939458580
-
-
Transfer Learning by Sharing Support Vectors. No. EPFL, 181360
-
Ablavsky, V., Becker, C., Fua, P., 2012. Transfer Learning by Sharing Support Vectors. No. EPFL-Report-181360.
-
(2012)
-
-
Ablavsky, V.1
Becker, C.2
Fua, P.3
-
2
-
-
24944578547
-
Probabilistic segmentation of brain tissue in MR imaging
-
Anbeek P., Vincken K., Van Bochove G., Van Osch M., Van der Grond J., et al. Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 2005, 27(4):795.
-
(2005)
Neuroimage
, vol.27
, Issue.4
, pp. 795
-
-
Anbeek, P.1
Vincken, K.2
Van Bochove, G.3
Van Osch, M.4
Van der Grond, J.5
-
3
-
-
20444501009
-
Unified segmentation
-
Ashburner J., Friston K. Unified segmentation. Neuroimage 2005, 26(3):839-851.
-
(2005)
Neuroimage
, vol.26
, Issue.3
, pp. 839-851
-
-
Ashburner, J.1
Friston, K.2
-
5
-
-
70349266356
-
Comprehensive survey on distance/similarity measures between probability density functions
-
Cha S. Comprehensive survey on distance/similarity measures between probability density functions. City 2007, 1(2):1.
-
(2007)
City
, vol.1
, Issue.2
, pp. 1
-
-
Cha, S.1
-
6
-
-
79955702502
-
LIBSVM: a library for support vector machines
-
Chang C., Lin C. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol 2011, 2(3):27.
-
(2011)
ACM Trans. Intell. Syst. Technol
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.1
Lin, C.2
-
7
-
-
84886738122
-
Sparse multimodal manifold-regularized transfer learning for MCI conversion prediction
-
Springer
-
Cheng B., Zhang D., Jie B., Shen D. Sparse multimodal manifold-regularized transfer learning for MCI conversion prediction. Machine Learning in Medical Imaging 2013, 251-259. Springer.
-
(2013)
Machine Learning in Medical Imaging
, pp. 251-259
-
-
Cheng, B.1
Zhang, D.2
Jie, B.3
Shen, D.4
-
9
-
-
0030303844
-
An interior trust region approach for nonlinear minimization subject to bounds
-
Coleman T., Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996, 6(2):418-445.
-
(1996)
SIAM J. Optim.
, vol.6
, Issue.2
, pp. 418-445
-
-
Coleman, T.1
Li, Y.2
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
33846214324
-
Segmenting articular cartilage automatically using a voxel classification approach
-
Folkesson J., Dam E., Olsen O., Pettersen P., Christiansen C. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imaging 2007, 26(1):106-115.
-
(2007)
IEEE Trans. Med. Imaging
, vol.26
, Issue.1
, pp. 106-115
-
-
Folkesson, J.1
Dam, E.2
Olsen, O.3
Pettersen, P.4
Christiansen, C.5
-
14
-
-
79958769300
-
Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images
-
Geremia E., Clatz O., Menze B., Konukoglu E., Criminisi A., Ayache N. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 2011, 57(2):378-390.
-
(2011)
NeuroImage
, vol.57
, Issue.2
, pp. 378-390
-
-
Geremia, E.1
Clatz, O.2
Menze, B.3
Konukoglu, E.4
Criminisi, A.5
Ayache, N.6
-
16
-
-
84921739238
-
Manifold alignment and transfer learning for classification of alzheimers disease
-
Springer
-
Guerrero R., Ledig C., Rueckert D. Manifold alignment and transfer learning for classification of alzheimers disease. Machine Learning in Medical Imaging 2014, 77-84. Springer.
-
(2014)
Machine Learning in Medical Imaging
, pp. 77-84
-
-
Guerrero, R.1
Ledig, C.2
Rueckert, D.3
-
17
-
-
84926278297
-
Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
-
Heimann T., Mountney P., John M., Ionasec R. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data. Med. Image anal. 2014, 18(8):1320-1328.
-
(2014)
Med. Image anal.
, vol.18
, Issue.8
, pp. 1320-1328
-
-
Heimann, T.1
Mountney, P.2
John, M.3
Ionasec, R.4
-
18
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Huang J., Gretto A., B.K.M., Schölkopf B., Smola A. Correcting sample selection bias by unlabeled data. Proceedings of Advances in neural information processing systems, NIPS 2006, 601-608.
-
(2006)
Proceedings of Advances in neural information processing systems, NIPS
, pp. 601-608
-
-
Huang, J.1
Gretto, A.B.K.M.2
Schölkopf, B.3
Smola, A.4
-
19
-
-
82655172891
-
The Rotterdam scan study: design and update up to 2012
-
Ikram M., Van der Lugt A., Niessen W., Krestin G., Koudstaal P., Hofman A., Breteler M., Vernooij M. The Rotterdam scan study: design and update up to 2012. Eur. J. Epidemiol. 2011, 26(10):811-824.
-
(2011)
Eur. J. Epidemiol.
, vol.26
, Issue.10
, pp. 811-824
-
-
Ikram, M.1
Van der Lugt, A.2
Niessen, W.3
Krestin, G.4
Koudstaal, P.5
Hofman, A.6
Breteler, M.7
Vernooij, M.8
-
20
-
-
54549100129
-
Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
-
Van der Lijn F., Den Heijer T., Breteler M., Niessen W. Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. Neuroimage 2008, 43(4):708-720.
-
(2008)
Neuroimage
, vol.43
, Issue.4
, pp. 708-720
-
-
Van der Lijn, F.1
Den Heijer, T.2
Breteler, M.3
Niessen, W.4
-
21
-
-
33644790879
-
Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps
-
Liu F., Xu D., Ferguson M., Chu B., Saam T., Takaya N., Hatsukami T., Yuan C., Kerwin W. Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps. Magn. Reson. Med. 2006, 55(3):659-668.
-
(2006)
Magn. Reson. Med.
, vol.55
, Issue.3
, pp. 659-668
-
-
Liu, F.1
Xu, D.2
Ferguson, M.3
Chu, B.4
Saam, T.5
Takaya, N.6
Hatsukami, T.7
Yuan, C.8
Kerwin, W.9
-
22
-
-
77956031473
-
A survey on transfer learning
-
Pan S., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.1
Yang, Q.2
-
23
-
-
85032751052
-
Visual domain adaptation: a survey of recent advances
-
Patel V., Gopalan R., Li R., Chellappa R. Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 2015, 32(3):53-69.
-
(2015)
IEEE Signal Process. Mag.
, vol.32
, Issue.3
, pp. 53-69
-
-
Patel, V.1
Gopalan, R.2
Li, R.3
Chellappa, R.4
-
24
-
-
0003408420
-
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
MIT press
-
Scholkopf B., Smola A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2001, MIT press.
-
(2001)
-
-
Scholkopf, B.1
Smola, A.2
-
26
-
-
0036828879
-
Fast robust automated brain extraction
-
Smith S. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17(3):143-155.
-
(2002)
Hum. Brain Mapp.
, vol.17
, Issue.3
, pp. 143-155
-
-
Smith, S.1
-
27
-
-
78349301730
-
3D segmentation in the clinic: a grand challenge II: MS lesion segmentation
-
Styner M., Lee J., Chin B., Chin M., Commowick O., Tran H., Markovic-Plese S., Jewells V., Warfield S. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. MIDAS J. 2008, 1-5.
-
(2008)
MIDAS J.
, pp. 1-5
-
-
Styner, M.1
Lee, J.2
Chin, B.3
Chin, M.4
Commowick, O.5
Tran, H.6
Markovic-Plese, S.7
Jewells, V.8
Warfield, S.9
-
28
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
Sugiyama M., Nakajima S., Kashima H., Von Buenau P., Kawanabe M. Direct importance estimation with model selection and its application to covariate shift adaptation. Adv. Neural Inf. Process. Sys. 2008, 20:1433-1440.
-
(2008)
Adv. Neural Inf. Process. Sys.
, vol.20
, pp. 1433-1440
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Von Buenau, P.4
Kawanabe, M.5
-
29
-
-
79251621795
-
Density ratio estimation: a comprehensive review
-
Sugiyama M., Suzuki T., Kanamori T. Density ratio estimation: a comprehensive review. RIMS Kokyuroku 2010, 1703:10-31.
-
(2010)
RIMS Kokyuroku
, vol.1703
, pp. 10-31
-
-
Sugiyama, M.1
Suzuki, T.2
Kanamori, T.3
-
30
-
-
77953171016
-
N4ITK: improved N3 bias correction
-
Tustison N., Avants B., Cook P., Zheng Y., Egan A., Yushkevich P., Gee J. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29(6):1310-1320.
-
(2010)
IEEE Trans. Med. Imaging
, vol.29
, Issue.6
, pp. 1310-1320
-
-
Tustison, N.1
Avants, B.2
Cook, P.3
Zheng, Y.4
Egan, A.5
Yushkevich, P.6
Gee, J.7
-
31
-
-
84939458303
-
Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning
-
Van Engelen A., van Dijk A., Truijman M., Van T Klooster R., Van Opbroek A., Van der Lugt A., Niessen W., Kooi M., De Bruijne M. Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning. IEEE Trans. Med. Imaging 2015, 34(6):1294.
-
(2015)
IEEE Trans. Med. Imaging
, vol.34
, Issue.6
, pp. 1294
-
-
Van Engelen, A.1
van Dijk, A.2
Truijman, M.3
Klooster, R.V.T.4
Van Opbroek, A.5
Van der Lugt, A.6
Niessen, W.7
Kooi, M.8
De Bruijne, M.9
-
32
-
-
84929483880
-
Transfer learning improves supervised image segmentation across imaging protocols
-
Van Opbroek A., Ikram M., Vernooij M., de Bruijne M. Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. Med. Imaging 2015, 34(5):1018.
-
(2015)
IEEE Trans. Med. Imaging
, vol.34
, Issue.5
, pp. 1018
-
-
Van Opbroek, A.1
Ikram, M.2
Vernooij, M.3
de Bruijne, M.4
-
33
-
-
84869986951
-
Supervised image segmentation across scanner protocols: a transfer learning approach
-
Van Opbroek A., Ikram M., Vernooij M., De Bruijne M. Supervised image segmentation across scanner protocols: a transfer learning approach. Mach. Learn. Med. Imaging 2012, 7588:160-167.
-
(2012)
Mach. Learn. Med. Imaging
, vol.7588
, pp. 160-167
-
-
Van Opbroek, A.1
Ikram, M.2
Vernooij, M.3
De Bruijne, M.4
-
34
-
-
84886732208
-
A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity
-
Springer
-
Van Opbroek A., Ikram M., Vernooij M., De Bruijne M. A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity. Machine Learning in Medical Imaging 2013, 49-56. Springer.
-
(2013)
Machine Learning in Medical Imaging
, pp. 49-56
-
-
Van Opbroek, A.1
Ikram, M.2
Vernooij, M.3
De Bruijne, M.4
-
36
-
-
84939459866
-
-
The Internet Brain Segmentation Repository, IBSR.
-
Worth, A., 2009. The Internet Brain Segmentation Repository, IBSR. http://www.cma.mgh.harvard.edu/ibsr.
-
(2009)
-
-
Worth, A.1
|