메뉴 건너뛰기




Volumn 24, Issue 1, 2015, Pages 245-254

Weighting training images by maximizing distribution similarity for supervised segmentation across scanners

Author keywords

Brain; Domain adaptation; Machine learning; MRI; Transfer learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BRAIN; CLASSIFICATION (OF INFORMATION); IMAGE SEGMENTATION; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; PROBABILITY DENSITY FUNCTION; SCANNING; SUPERVISED LEARNING; TISSUE;

EID: 84939458403     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2015.06.010     Document Type: Article
Times cited : (34)

References (37)
  • 1
    • 84939458580 scopus 로고    scopus 로고
    • Transfer Learning by Sharing Support Vectors. No. EPFL, 181360
    • Ablavsky, V., Becker, C., Fua, P., 2012. Transfer Learning by Sharing Support Vectors. No. EPFL-Report-181360.
    • (2012)
    • Ablavsky, V.1    Becker, C.2    Fua, P.3
  • 3
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • Ashburner J., Friston K. Unified segmentation. Neuroimage 2005, 26(3):839-851.
    • (2005) Neuroimage , vol.26 , Issue.3 , pp. 839-851
    • Ashburner, J.1    Friston, K.2
  • 5
    • 70349266356 scopus 로고    scopus 로고
    • Comprehensive survey on distance/similarity measures between probability density functions
    • Cha S. Comprehensive survey on distance/similarity measures between probability density functions. City 2007, 1(2):1.
    • (2007) City , vol.1 , Issue.2 , pp. 1
    • Cha, S.1
  • 6
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C., Lin C. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol 2011, 2(3):27.
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 27
    • Chang, C.1    Lin, C.2
  • 7
    • 84886738122 scopus 로고    scopus 로고
    • Sparse multimodal manifold-regularized transfer learning for MCI conversion prediction
    • Springer
    • Cheng B., Zhang D., Jie B., Shen D. Sparse multimodal manifold-regularized transfer learning for MCI conversion prediction. Machine Learning in Medical Imaging 2013, 251-259. Springer.
    • (2013) Machine Learning in Medical Imaging , pp. 251-259
    • Cheng, B.1    Zhang, D.2    Jie, B.3    Shen, D.4
  • 9
    • 0030303844 scopus 로고    scopus 로고
    • An interior trust region approach for nonlinear minimization subject to bounds
    • Coleman T., Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996, 6(2):418-445.
    • (1996) SIAM J. Optim. , vol.6 , Issue.2 , pp. 418-445
    • Coleman, T.1    Li, Y.2
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 33846214324 scopus 로고    scopus 로고
    • Segmenting articular cartilage automatically using a voxel classification approach
    • Folkesson J., Dam E., Olsen O., Pettersen P., Christiansen C. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imaging 2007, 26(1):106-115.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , Issue.1 , pp. 106-115
    • Folkesson, J.1    Dam, E.2    Olsen, O.3    Pettersen, P.4    Christiansen, C.5
  • 14
    • 79958769300 scopus 로고    scopus 로고
    • Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images
    • Geremia E., Clatz O., Menze B., Konukoglu E., Criminisi A., Ayache N. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 2011, 57(2):378-390.
    • (2011) NeuroImage , vol.57 , Issue.2 , pp. 378-390
    • Geremia, E.1    Clatz, O.2    Menze, B.3    Konukoglu, E.4    Criminisi, A.5    Ayache, N.6
  • 16
    • 84921739238 scopus 로고    scopus 로고
    • Manifold alignment and transfer learning for classification of alzheimers disease
    • Springer
    • Guerrero R., Ledig C., Rueckert D. Manifold alignment and transfer learning for classification of alzheimers disease. Machine Learning in Medical Imaging 2014, 77-84. Springer.
    • (2014) Machine Learning in Medical Imaging , pp. 77-84
    • Guerrero, R.1    Ledig, C.2    Rueckert, D.3
  • 17
    • 84926278297 scopus 로고    scopus 로고
    • Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
    • Heimann T., Mountney P., John M., Ionasec R. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data. Med. Image anal. 2014, 18(8):1320-1328.
    • (2014) Med. Image anal. , vol.18 , Issue.8 , pp. 1320-1328
    • Heimann, T.1    Mountney, P.2    John, M.3    Ionasec, R.4
  • 20
    • 54549100129 scopus 로고    scopus 로고
    • Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
    • Van der Lijn F., Den Heijer T., Breteler M., Niessen W. Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. Neuroimage 2008, 43(4):708-720.
    • (2008) Neuroimage , vol.43 , Issue.4 , pp. 708-720
    • Van der Lijn, F.1    Den Heijer, T.2    Breteler, M.3    Niessen, W.4
  • 22
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan S., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.1    Yang, Q.2
  • 24
    • 0003408420 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT press
    • Scholkopf B., Smola A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2001, MIT press.
    • (2001)
    • Scholkopf, B.1    Smola, A.2
  • 26
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • Smith S. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17(3):143-155.
    • (2002) Hum. Brain Mapp. , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.1
  • 28
    • 85161964516 scopus 로고    scopus 로고
    • Direct importance estimation with model selection and its application to covariate shift adaptation
    • Sugiyama M., Nakajima S., Kashima H., Von Buenau P., Kawanabe M. Direct importance estimation with model selection and its application to covariate shift adaptation. Adv. Neural Inf. Process. Sys. 2008, 20:1433-1440.
    • (2008) Adv. Neural Inf. Process. Sys. , vol.20 , pp. 1433-1440
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Von Buenau, P.4    Kawanabe, M.5
  • 29
    • 79251621795 scopus 로고    scopus 로고
    • Density ratio estimation: a comprehensive review
    • Sugiyama M., Suzuki T., Kanamori T. Density ratio estimation: a comprehensive review. RIMS Kokyuroku 2010, 1703:10-31.
    • (2010) RIMS Kokyuroku , vol.1703 , pp. 10-31
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 32
    • 84929483880 scopus 로고    scopus 로고
    • Transfer learning improves supervised image segmentation across imaging protocols
    • Van Opbroek A., Ikram M., Vernooij M., de Bruijne M. Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. Med. Imaging 2015, 34(5):1018.
    • (2015) IEEE Trans. Med. Imaging , vol.34 , Issue.5 , pp. 1018
    • Van Opbroek, A.1    Ikram, M.2    Vernooij, M.3    de Bruijne, M.4
  • 33
    • 84869986951 scopus 로고    scopus 로고
    • Supervised image segmentation across scanner protocols: a transfer learning approach
    • Van Opbroek A., Ikram M., Vernooij M., De Bruijne M. Supervised image segmentation across scanner protocols: a transfer learning approach. Mach. Learn. Med. Imaging 2012, 7588:160-167.
    • (2012) Mach. Learn. Med. Imaging , vol.7588 , pp. 160-167
    • Van Opbroek, A.1    Ikram, M.2    Vernooij, M.3    De Bruijne, M.4
  • 34
    • 84886732208 scopus 로고    scopus 로고
    • A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity
    • Springer
    • Van Opbroek A., Ikram M., Vernooij M., De Bruijne M. A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity. Machine Learning in Medical Imaging 2013, 49-56. Springer.
    • (2013) Machine Learning in Medical Imaging , pp. 49-56
    • Van Opbroek, A.1    Ikram, M.2    Vernooij, M.3    De Bruijne, M.4
  • 36
    • 84939459866 scopus 로고    scopus 로고
    • The Internet Brain Segmentation Repository, IBSR.
    • Worth, A., 2009. The Internet Brain Segmentation Repository, IBSR. http://www.cma.mgh.harvard.edu/ibsr.
    • (2009)
    • Worth, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.