메뉴 건너뛰기




Volumn 13, Issue 2, 2003, Pages 540-560

Convergence to equilibrium for granular media equations and their Euler schemes

Author keywords

Concentration of measure phenomenon; Implicit Euler scheme; Interacting particle system; Logarithmic Sobolev inequality; Nonlinear parabolic PDE; Propagation of chaos

Indexed keywords


EID: 21144445368     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/aoap/1050689593     Document Type: Article
Times cited : (134)

References (10)
  • 2
    • 0002432396 scopus 로고    scopus 로고
    • On Sobolev and logarithmic Sobolev inequalities for Markov semigroups
    • (K. D. Elworthy, S. Kusuoka and I. Shigekawa, eds.). World Scientific, River Edge, NJ
    • BAKRY, D. (1997). On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. In New Trends in Stochastic Analysis (K. D. Elworthy, S. Kusuoka and I. Shigekawa, eds.) 43-75. World Scientific, River Edge, NJ.
    • (1997) New Trends in Stochastic Analysis , pp. 43-75
    • Bakry, D.1
  • 3
    • 0040687609 scopus 로고    scopus 로고
    • Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos
    • BENACHOUR, S., ROYNETTE, B., TALAY, D. and VALLOIS, P. (1998). Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic Process. Appl. 75 173-201.
    • (1998) Stochastic Process. Appl. , vol.75 , pp. 173-201
    • Benachour, S.1    Roynette, B.2    Talay, D.3    Vallois, P.4
  • 4
    • 0040094089 scopus 로고    scopus 로고
    • Nonlinear self-stabilizing processes II. Convergence to invariant probability
    • BENACHOUR, S., ROYNETTE, B. and VALLOIS, P. (1998). Nonlinear self-stabilizing processes II. Convergence to invariant probability. Stochastic Process. Appl. 75 203-224.
    • (1998) Stochastic Process. Appl. , vol.75 , pp. 203-224
    • Benachour, S.1    Roynette, B.2    Vallois, P.3
  • 6
    • 0035638785 scopus 로고    scopus 로고
    • Hypercontractivity of Hamilton-Jacobi equations
    • BOBKOV, S., GENTIL, I. and LEDOUX, M. (2001). Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pure Appl. 80 669-696.
    • (2001) J. Math. Pure Appl. , vol.80 , pp. 669-696
    • Bobkov, S.1    Gentil, I.2    Ledoux, M.3
  • 7
    • 0037906751 scopus 로고    scopus 로고
    • Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates
    • To appear
    • CARRILLO, J. A., MCCANN, R. J. and VILLANI, C. (2002). Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana. To appear.
    • (2002) Rev. Mat. Iberoamericana
    • Carrillo, J.A.1    McCann, R.J.2    Villani, C.3
  • 8
    • 0000458262 scopus 로고    scopus 로고
    • Concentration of measure and logarithmic Sobolev inequalities
    • Springer, Berlin
    • LEDOUX, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités XXXIII. Lecture Notes in Math. 1709 120-216. Springer, Berlin.
    • (1999) Séminaire de Probabilités XXXIII. Lecture Notes in Math. , vol.1709 , pp. 120-216
    • Ledoux, M.1
  • 9
    • 0001559554 scopus 로고    scopus 로고
    • Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality
    • OTTO, F. and VILLANI, C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Fund. Anal. 173 361-400.
    • (2000) J. Fund. Anal. , vol.173 , pp. 361-400
    • Otto, F.1    Villani, C.2
  • 10
    • 0345275329 scopus 로고    scopus 로고
    • Stochastic Hamiltonian dissipative systems: Exponential convergence to the invariant measure, and discretisation by the implicit Euler schemes
    • TALAY, T. (2002). Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretisation by the implicit Euler schemes. Markov Process. Appl. 8 163-198.
    • (2002) Markov Process. Appl. , vol.8 , pp. 163-198
    • Talay, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.