메뉴 건너뛰기




Volumn 105, Issue , 2015, Pages 9-25

Statistical analysis of driving factors of residential energy demand in the greater Sydney region, Australia

Author keywords

Driving factors for electricity consumption; Empirical data; Energy demand; Energy modelling; Residential household characteristics; Smart grid

Indexed keywords

ELECTRIC POWER TRANSMISSION NETWORKS; ELECTRIC POWER UTILIZATION; ENERGY EFFICIENCY; ENERGY MANAGEMENT; HOUSING; LINEAR REGRESSION; REGRESSION ANALYSIS;

EID: 84938843355     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2015.07.030     Document Type: Article
Times cited : (70)

References (63)
  • 1
    • 67650761091 scopus 로고    scopus 로고
    • Modeling of end-use energy consumption in the residential sector: A review of modeling techniques
    • L.G. Swan, and V.I. Ugursal Modeling of end-use energy consumption in the residential sector: a review of modeling techniques Renewable Sustainable Energy Rev. 13 8 2009 1819 1835
    • (2009) Renewable Sustainable Energy Rev. , vol.13 , Issue.8 , pp. 1819-1835
    • Swan, L.G.1    Ugursal, V.I.2
  • 5
    • 77649239082 scopus 로고    scopus 로고
    • A review of bottom-up building stock models for energy consumption in the residential sector
    • M. Kavgic, and et al. A review of bottom-up building stock models for energy consumption in the residential sector Build. Environ. 45 7 2010 1683 1697
    • (2010) Build. Environ. , vol.45 , Issue.7 , pp. 1683-1697
    • Kavgic, M.1
  • 6
    • 79953329745 scopus 로고    scopus 로고
    • Residential electricity consumption in Portugal: Findings from top-down and bottom-up models
    • D. Wiesmann, and et al. Residential electricity consumption in Portugal: findings from top-down and bottom-up models Energy Policy 39 5 2011 2772 2779
    • (2011) Energy Policy , vol.39 , Issue.5 , pp. 2772-2779
    • Wiesmann, D.1
  • 7
    • 0019226082 scopus 로고
    • An energy use model of the residential sector
    • D.L. O'Neal, and E. Hirst An energy use model of the residential sector IEEE Trans. Syst. Man Cybern. 10 11 1980 749 755
    • (1980) IEEE Trans. Syst. Man Cybern. , vol.10 , Issue.11 , pp. 749-755
    • O'Neal, D.L.1    Hirst, E.2
  • 8
    • 14844340859 scopus 로고    scopus 로고
    • Combining top-down and bottom-up approaches to energy-economy modeling using discrete choice methods
    • N. Rivers, and M. Jaccard Combining top-down and bottom-up approaches to energy-economy modeling using discrete choice methods Energy J. 26 1 2005 83 106
    • (2005) Energy J. , vol.26 , Issue.1 , pp. 83-106
    • Rivers, N.1    Jaccard, M.2
  • 9
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • M. Aydinalp-Koksal, and V.I. Ugursal Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector Appl. Energy 85 4 2008 271 296
    • (2008) Appl. Energy , vol.85 , Issue.4 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 11
    • 68449093602 scopus 로고    scopus 로고
    • Electricity consumption forecasting in Italy using linear regression models
    • V. Bianco, O. Manca, and S. Nardini Electricity consumption forecasting in Italy using linear regression models Energy 34 9 2009 1413 1421
    • (2009) Energy , vol.34 , Issue.9 , pp. 1413-1421
    • Bianco, V.1    Manca, O.2    Nardini, S.3
  • 12
    • 84887827675 scopus 로고    scopus 로고
    • The impact of population ageing on energy use: Evidence from Italy
    • G. Garau, P. Lecca, and G. Mandras The impact of population ageing on energy use: evidence from Italy Econ. Modell. 2013
    • (2013) Econ. Modell.
    • Garau, G.1    Lecca, P.2    Mandras, G.3
  • 13
    • 78651425187 scopus 로고    scopus 로고
    • Occupant related household energy consumption in Canada: Estimation using a bottom-up neural-network technique
    • L.G. Swan, V.I. Ugursal, and I. Beausoleil-Morrison Occupant related household energy consumption in Canada: estimation using a bottom-up neural-network technique Energy Build. 43 2-3 2011 326 337
    • (2011) Energy Build. , vol.43 , Issue.2-3 , pp. 326-337
    • Swan, L.G.1    Ugursal, V.I.2    Beausoleil-Morrison, I.3
  • 14
    • 84903848211 scopus 로고    scopus 로고
    • Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China
    • 0
    • S. Farzana, and et al. Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China Energy Build. 81 0 2014 161 169
    • (2014) Energy Build. , vol.81 , pp. 161-169
    • Farzana, S.1
  • 15
    • 79953026551 scopus 로고    scopus 로고
    • Statistical analyses on winter energy consumption characteristics of residential buildings in some cities of China
    • S. Chen, and et al. Statistical analyses on winter energy consumption characteristics of residential buildings in some cities of China Energy Build. 43 5 2011 1063 1070
    • (2011) Energy Build. , vol.43 , Issue.5 , pp. 1063-1070
    • Chen, S.1
  • 16
    • 71749087893 scopus 로고    scopus 로고
    • Contrastive analyses on annual energy consumption characteristics and the influence mechanism between new and old residential buildings in Shanghai, China, by the statistical methods
    • S. Chen, and et al. Contrastive analyses on annual energy consumption characteristics and the influence mechanism between new and old residential buildings in Shanghai, China, by the statistical methods Energy Build. 41 12 2009 1347 1359
    • (2009) Energy Build. , vol.41 , Issue.12 , pp. 1347-1359
    • Chen, S.1
  • 17
    • 84882379671 scopus 로고    scopus 로고
    • A statistical analysis of a residential energy consumption survey study in Hangzhou, China
    • 0
    • J. Chen, X. Wang, and K. Steemers A statistical analysis of a residential energy consumption survey study in Hangzhou, China Energy Build. 66 0 2013 193 202
    • (2013) Energy Build. , vol.66 , pp. 193-202
    • Chen, J.1    Wang, X.2    Steemers, K.3
  • 19
    • 84902206359 scopus 로고    scopus 로고
    • Mid-term forecasting of urban electricity load to isolate air-conditioning impact
    • 0
    • L. Friedrich, P. Armstrong, and A. Afshari Mid-term forecasting of urban electricity load to isolate air-conditioning impact Energy Build. 80 0 2014 72 80
    • (2014) Energy Build. , vol.80 , pp. 72-80
    • Friedrich, L.1    Armstrong, P.2    Afshari, A.3
  • 21
    • 0344417105 scopus 로고    scopus 로고
    • Forecasting of energy production and consumption in Asturias (northern Spain)
    • S. Gonzales Chavez, J. Xiberta Bernat, and H. Llaneza Coalla Forecasting of energy production and consumption in Asturias (northern Spain) Energy 24 3 1999 183 198
    • (1999) Energy , vol.24 , Issue.3 , pp. 183-198
    • Gonzales Chavez, S.1    Xiberta Bernat, J.2    Llaneza Coalla, H.3
  • 22
    • 0036488915 scopus 로고    scopus 로고
    • Forecasting the primary energy demand in Turkey and analysis of cyclic patterns
    • V.Ş. Ediger, and H. Tatlidil Forecasting the primary energy demand in Turkey and analysis of cyclic patterns Energy Convers. Manage. 43 4 2002 473 487
    • (2002) Energy Convers. Manage. , vol.43 , Issue.4 , pp. 473-487
    • Ediger, V.Ş.1    Tatlidil, H.2
  • 23
    • 84886050023 scopus 로고    scopus 로고
    • Univariate modelling of energy consumption in Turkish agriculture
    • G. Unakitan, and B. Türkekul Univariate modelling of energy consumption in Turkish agriculture Energy Sources, B: Econ. Plann. Policy 9 3 2014 284 290
    • (2014) Energy Sources, B: Econ. Plann. Policy , vol.9 , Issue.3 , pp. 284-290
    • Unakitan, G.1    Türkekul, B.2
  • 24
    • 0346667061 scopus 로고    scopus 로고
    • Underlying trends and seasonality in UK energy demand: A sectoral analysis
    • L.C. Hunt, G. Judge, and Y. Ninomiya Underlying trends and seasonality in UK energy demand: a sectoral analysis Energy Econ. 25 1 2003 p93
    • (2003) Energy Econ. , vol.25 , Issue.1 , pp. 93
    • Hunt, L.C.1    Judge, G.2    Ninomiya, Y.3
  • 25
    • 77949266106 scopus 로고    scopus 로고
    • Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
    • U. Kumar, and V.K. Jain Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India Energy 35 4 2010 1709 1716
    • (2010) Energy , vol.35 , Issue.4 , pp. 1709-1716
    • Kumar, U.1    Jain, V.K.2
  • 26
    • 0023399522 scopus 로고
    • Time series approach to short term load forecasting
    • M.T. Hagan, and S.M. Behr Time series approach to short term load forecasting IEEE Trans. Power Syst. PWRS-2 3 1987 785 791
    • (1987) IEEE Trans. Power Syst. , vol.PWRS-2 , Issue.3 , pp. 785-791
    • Hagan, M.T.1    Behr, S.M.2
  • 27
    • 0036577622 scopus 로고    scopus 로고
    • Forecasting next-day electricity prices by time series models
    • F.J. Nogales, and et al. Forecasting next-day electricity prices by time series models IEEE Trans. Power Syst. 17 2 2002 342 348
    • (2002) IEEE Trans. Power Syst. , vol.17 , Issue.2 , pp. 342-348
    • Nogales, F.J.1
  • 28
    • 0028424925 scopus 로고
    • Real-time implementation of short-term load forecasting for distribution power systems
    • J.Y. Fan, and J.D. McDonald Real-time implementation of short-term load forecasting for distribution power systems IEEE Trans. Power Syst. 9 2 1994 988 994
    • (1994) IEEE Trans. Power Syst. , vol.9 , Issue.2 , pp. 988-994
    • Fan, J.Y.1    McDonald, J.D.2
  • 29
    • 0030769984 scopus 로고    scopus 로고
    • Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis
    • R.E. Abdel-Aal, and A.Z. Al-Garni Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis Energy 22 11 1997 1059 1169
    • (1997) Energy , vol.22 , Issue.11 , pp. 1059-1169
    • Abdel-Aal, R.E.1    Al-Garni, A.Z.2
  • 31
    • 0035153396 scopus 로고    scopus 로고
    • Modeling of nonstationary time-series data, Part II. Dynamic periodic trends
    • E.H. Barakat Modeling of nonstationary time-series data, Part II. Dynamic periodic trends Int. J. Electr. Power Energy Syst. 23 1 2001 63 68
    • (2001) Int. J. Electr. Power Energy Syst. , vol.23 , Issue.1 , pp. 63-68
    • Barakat, E.H.1
  • 32
    • 0021389593 scopus 로고
    • Load forecasting for transmission planning
    • H.L. Willis, and H.N. Tram Load forecasting for transmission planning IEEE Trans. Power Apparatus Syst. PAS-103 3 1984 561 568
    • (1984) IEEE Trans. Power Apparatus Syst. , vol.PAS-103 , Issue.3 , pp. 561-568
    • Willis, H.L.1    Tram, H.N.2
  • 33
    • 80054682036 scopus 로고    scopus 로고
    • A novel modeling approach for hourly forecasting of long-term electric energy demand
    • Ü.B. Filik, Ö.N. Gerek, and M. Kurban A novel modeling approach for hourly forecasting of long-term electric energy demand Energy Convers. Manage. 52 1 2011 199 211
    • (2011) Energy Convers. Manage. , vol.52 , Issue.1 , pp. 199-211
    • Filik, Ü.B.1    Gerek, Ö.N.2    Kurban, M.3
  • 34
    • 0032142541 scopus 로고    scopus 로고
    • Nonparametric regression based short-term load forecasting
    • W. Charytoniuk, and M.S. Chen Nonparametric regression based short-term load forecasting IEEE Trans. Power Syst. 13 3 1998 725 730
    • (1998) IEEE Trans. Power Syst. , vol.13 , Issue.3 , pp. 725-730
    • Charytoniuk, W.1    Chen, M.S.2
  • 35
    • 18144377117 scopus 로고    scopus 로고
    • Long-term/mid-term electric load forecasting based on short-term correlation and annual growth
    • H.M. Al-Hamadi, and S.A. Soliman Long-term/mid-term electric load forecasting based on short-term correlation and annual growth Electr. Power Syst. Res. 74 3 2005 353 361
    • (2005) Electr. Power Syst. Res. , vol.74 , Issue.3 , pp. 353-361
    • Al-Hamadi, H.M.1    Soliman, S.A.2
  • 36
    • 0028546825 scopus 로고
    • Regression based peak load forecasting using a transformation technique
    • T. Haida, and S. Muto Regression based peak load forecasting using a transformation technique IEEE Trans. Power Syst. 9 4 1994 1788 1794
    • (1994) IEEE Trans. Power Syst. , vol.9 , Issue.4 , pp. 1788-1794
    • Haida, T.1    Muto, S.2
  • 37
    • 33645914413 scopus 로고    scopus 로고
    • A model for generating household electricity load profiles
    • J.V. Paatero, and P.D. Lund A model for generating household electricity load profiles Int. J. Energy Res. 30 5 2006 273 290
    • (2006) Int. J. Energy Res. , vol.30 , Issue.5 , pp. 273-290
    • Paatero, J.V.1    Lund, P.D.2
  • 38
    • 84923105572 scopus 로고    scopus 로고
    • Model for electric load profiles with high time resolution for German households
    • D. Fischer, A. Härtl, and B. Wille-Haussmann Model for electric load profiles with high time resolution for German households Energy Build. 92 2015 170 179
    • (2015) Energy Build. , vol.92 , pp. 170-179
    • Fischer, D.1    Härtl, A.2    Wille-Haussmann, B.3
  • 39
    • 77955582902 scopus 로고    scopus 로고
    • Domestic electricity use: A high-resolution energy demand model
    • I. Richardson, and et al. Domestic electricity use: A high-resolution energy demand model Energy Build. 42 10 2010 1878 1887
    • (2010) Energy Build. , vol.42 , Issue.10 , pp. 1878-1887
    • Richardson, I.1
  • 41
    • 84861793096 scopus 로고    scopus 로고
    • Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
    • 0
    • A. Tsanas, and A. Xifara Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools Energy Build. 49 0 2012 560 567
    • (2012) Energy Build. , vol.49 , pp. 560-567
    • Tsanas, A.1    Xifara, A.2
  • 42
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • M. Aydinalp, V. Ismet Ugursal, and A.S. Fung Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks Appl. Energy 71 2 2002 87 110
    • (2002) Appl. Energy , vol.71 , Issue.2 , pp. 87-110
    • Aydinalp, M.1    Ismet Ugursal, V.2    Fung, A.S.3
  • 44
    • 33845273062 scopus 로고    scopus 로고
    • Artificial neural network analysis of world green energy use
    • K. Ermis, and et al. Artificial neural network analysis of world green energy use Energy Policy 35 3 2007 1731 1743
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1731-1743
    • Ermis, K.1
  • 45
    • 84882289494 scopus 로고    scopus 로고
    • A novel machine learning approach for estimation of electricity demand: An empirical evidence from Thailand
    • E.S. Mostafavi, and et al. A novel machine learning approach for estimation of electricity demand: an empirical evidence from Thailand Energy Convers. Manage. 74 2013 548 555
    • (2013) Energy Convers. Manage. , vol.74 , pp. 548-555
    • Mostafavi, E.S.1
  • 47
    • 84938887090 scopus 로고    scopus 로고
    • Statistical modelling of district-level residential electricity use in NSW, Australia
    • F. Boulaire, and et al. Statistical modelling of district-level residential electricity use in NSW, Australia Sustainability Sci. 2013 1 12
    • (2013) Sustainability Sci. , pp. 1-12
    • Boulaire, F.1
  • 48
    • 84870608441 scopus 로고    scopus 로고
    • Forecasting electricity demand in Australian National Electricity Market
    • S. Fan, and R.J. Hyndman Forecasting electricity demand in Australian National Electricity Market IEEE Power and Energy Society General Meeting 2012 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6345304
    • (2012) IEEE Power and Energy Society General Meeting
    • Fan, S.1    Hyndman, R.J.2
  • 50
    • 77649190930 scopus 로고    scopus 로고
    • Assessment of climate change impact on residential building heating and cooling energy requirement in Australia
    • X. Wang, D. Chen, and Z. Ren Assessment of climate change impact on residential building heating and cooling energy requirement in Australia Build. Environ. 45 7 2010 1663 1682
    • (2010) Build. Environ. , vol.45 , Issue.7 , pp. 1663-1682
    • Wang, X.1    Chen, D.2    Ren, Z.3
  • 51
    • 33751561598 scopus 로고    scopus 로고
    • Imagining Australia's energy services futures
    • A.K. Pears Imagining Australia's energy services futures Futures 39 2-3 2007 253 271
    • (2007) Futures , vol.39 , Issue.2-3 , pp. 253-271
    • Pears, A.K.1
  • 52
    • 84866139640 scopus 로고    scopus 로고
    • Smart metering and water end-use data: Conservation benefits and privacy risks
    • D.P. Giurco, S.B. White, and R.A. Stewart Smart metering and water end-use data: conservation benefits and privacy risks Water 2 3 2010 461 467
    • (2010) Water , vol.2 , Issue.3 , pp. 461-467
    • Giurco, D.P.1    White, S.B.2    Stewart, R.A.3
  • 55
    • 84938847384 scopus 로고    scopus 로고
    • Available from cited 2014 5 Nov 2014
    • BOM Average Annual & Monthly Heating and Cooling Degree Days 2012 Available from 〈http://www.bom.gov.au/jsp/ncc/climate-averages/degree-days/index.jsp?maptype=1&period=an&product=hdd18#maps⌠(cited 2014 5 Nov 2014)
    • (2012) Average Annual & Monthly Heating and Cooling Degree Days
    • Bom1
  • 60
    • 0000357545 scopus 로고
    • Estimating nonresponse bias in mail surveys
    • J.S. Armstrong, and T.S. Overton Estimating nonresponse bias in mail surveys J. Mark. Res. 14 1977 396 402
    • (1977) J. Mark. Res. , vol.14 , pp. 396-402
    • Armstrong, J.S.1    Overton, T.S.2
  • 61
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • C.J. Willmott, and K. Matsuura Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance Clim. Res. 30 1 2005 p79
    • (2005) Clim. Res. , vol.30 , Issue.1 , pp. 79
    • Willmott, C.J.1    Matsuura, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.