메뉴 건너뛰기




Volumn 74, Issue , 2013, Pages 548-555

A novel machine learning approach for estimation of electricity demand: An empirical evidence from Thailand

Author keywords

Electricity demand; Genetic programming; Hybrid method; Prediction; Simulated annealing

Indexed keywords

ACCURATE PREDICTION; ELECTRICITY DEMANDS; GROSS DOMESTIC PRODUCTS; HYBRID APPROACH; HYBRID METHOD; INDUSTRIAL PRODUCT; MACHINE LEARNING APPROACHES; PREDICTION EQUATIONS;

EID: 84882289494     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2013.06.031     Document Type: Article
Times cited : (42)

References (55)
  • 1
    • 44449171970 scopus 로고    scopus 로고
    • Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
    • A. Azadeh, M. Saberi, S.F. Ghaderi, A. Gitiforouz, and V. Ebrahimipour Improved estimation of electricity demand function by integration of fuzzy system and data mining approach Energy Convers Manage 49 2008 2165 2177
    • (2008) Energy Convers Manage , vol.49 , pp. 2165-2177
    • Azadeh, A.1    Saberi, M.2    Ghaderi, S.F.3    Gitiforouz, A.4    Ebrahimipour, V.5
  • 2
    • 80052807923 scopus 로고    scopus 로고
    • Forecasting electricity demand in Thailand with an artificial neural network approach
    • K. Kandananond Forecasting electricity demand in Thailand with an artificial neural network approach Energies 4 2011 1246 1257
    • (2011) Energies , vol.4 , pp. 1246-1257
    • Kandananond, K.1
  • 5
    • 0030769984 scopus 로고    scopus 로고
    • Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis
    • R.E. Abdel-Aal, and A.Z. Al-Garni Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis Energy 22 1997 1059 1069
    • (1997) Energy , vol.22 , pp. 1059-1069
    • Abdel-Aal, R.E.1    Al-Garni, A.Z.2
  • 6
    • 33845254780 scopus 로고    scopus 로고
    • ARIMA forecasting of primary energy demand by fuel in Turkey
    • DOI 10.1016/j.enpol.2006.05.009, PII S0301421506002291
    • V.S. Ediger, and S. Akar ARIMA forecasting of primary energy demand by fuel in Turkey Energy Policy 35 2007 1701 1708 (Pubitemid 44858159)
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1701-1708
    • Ediger, V.S.1    Akar, S.2
  • 7
    • 70349421297 scopus 로고    scopus 로고
    • Short term electricity load demand forecasting in Indonesia by using double seasonal recurrent neural networks
    • Suhartono, and A.J. Endharta Short term electricity load demand forecasting in Indonesia by using double seasonal recurrent neural networks Int J Math Mod Meth Appl Sci 3 2009 171 178
    • (2009) Int J Math Mod Meth Appl Sci , vol.3 , pp. 171-178
    • Suhartono1    Endharta, A.J.2
  • 8
    • 84861919640 scopus 로고    scopus 로고
    • Double seasonal ARIMA model for forecasting load demand
    • N. Mohamed, M.H. Ahmad, Z. Ismail, and Suhartono Double seasonal ARIMA model for forecasting load demand Matematika 26 2010 217 231
    • (2010) Matematika , vol.26 , pp. 217-231
    • Mohamed, N.1    Ahmad, M.H.2    Ismail, Z.3    Suhartono4
  • 9
    • 0043246006 scopus 로고    scopus 로고
    • Short-term electricity demand forecasting using double seasonal exponential smoothing
    • J.W. Taylor Short-term electricity demand forecasting using double seasonal exponential smoothing J Oper Res Soc 54 2003 799 805
    • (2003) J Oper Res Soc , vol.54 , pp. 799-805
    • Taylor, J.W.1
  • 10
    • 70449687714 scopus 로고    scopus 로고
    • Triple seasonal methods for short-term electricity demand forecasting
    • J.W. Taylor Triple seasonal methods for short-term electricity demand forecasting Eur J Oper Res 204 2010 139 152
    • (2010) Eur J Oper Res , vol.204 , pp. 139-152
    • Taylor, J.W.1
  • 11
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • DOI 10.1016/j.ijforecast.2005.06.006, PII S0169207005000907
    • J.W. Taylor, L.M. de Menezes, and P.E. Mc Sharry A comparison o univariate methods for forecasting electricity demand up to a day ahead Int J Forecast 22 2006 1 16 (Pubitemid 43174787)
    • (2006) International Journal of Forecasting , vol.22 , Issue.1 , pp. 1-16
    • Taylor, J.W.1    De Menezes, L.M.2    McSharry, P.E.3
  • 12
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems
    • A.H. Alavi, and A.H. Gandomi A robust data mining approach for formulation of geotechnical engineering systems Eng Computations 28 3 2011 242 274
    • (2011) Eng Computations , vol.28 , Issue.3 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 13
    • 0031235612 scopus 로고    scopus 로고
    • Does machine learning really work?
    • T. Mitchell Does machine learning really work? AI Mag 18 3 1997 11 20 (Pubitemid 127684648)
    • (1997) AI Magazine , vol.18 , Issue.3 , pp. 11-20
    • Mitchell, T.M.1
  • 14
    • 33846266227 scopus 로고    scopus 로고
    • Forecasting electricity market pricing using artificial neural networks
    • H. Tien Pao Forecasting electricity market pricing using artificial neural networks Energy Convers Manage 48 2007 907 912
    • (2007) Energy Convers Manage , vol.48 , pp. 907-912
    • Tien Pao, H.1
  • 15
    • 27644499727 scopus 로고    scopus 로고
    • Artificial neural network approach to spatial estimation of wind velocity data
    • A. O'ztopal Artificial neural network approach to spatial estimation of wind velocity data Energy Convers Manage 2006 395 406
    • (2006) Energy Convers Manage , pp. 395-406
    • O'Ztopal, A.1
  • 16
    • 33745912235 scopus 로고    scopus 로고
    • Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade
    • DOI 10.1016/j.enconman.2006.01.011, PII S019689040600032X
    • M. Gölcü Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade Energy Convers Manage 2006 3333 3343 (Pubitemid 44051688)
    • (2006) Energy Conversion and Management , vol.47 , Issue.18-19 , pp. 3333-3343
    • Golcu, M.1
  • 17
    • 3142641276 scopus 로고    scopus 로고
    • Forecasting daily urban electric load profiles using artificial neural networks
    • M. Beccali, M. Cellura, Brano V. Lo, and A. Marvuglia Forecasting daily urban electric load profiles using artificial neural networks Energy Convers Manage 45 2004 2879 2900
    • (2004) Energy Convers Manage , vol.45 , pp. 2879-2900
    • Beccali, M.1    Cellura, M.2    Lo, B.V.3    Marvuglia, A.4
  • 18
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • A. Azadeh, S.F. Ghaderi, and S. Sohrabkhani Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors Energy Convers Manage 49 2008 2272 2278
    • (2008) Energy Convers Manage , vol.49 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 19
    • 33645418480 scopus 로고    scopus 로고
    • Forecasting of electricity prices with neural networks
    • R. Gareta, L.M. Romeo, and A. Gil Forecasting of electricity prices with neural networks Energy Convers Manage 47 2006 1770 1778
    • (2006) Energy Convers Manage , vol.47 , pp. 1770-1778
    • Gareta, R.1    Romeo, L.M.2    Gil, A.3
  • 20
    • 0037411575 scopus 로고    scopus 로고
    • Regional load forecasting in Taiwan-applications of artificial neural networks
    • C.C. Hsu, and C.Y. Chen Regional load forecasting in Taiwan-applications of artificial neural networks Energy Convers Manage 44 2003 1941 1949
    • (2003) Energy Convers Manage , vol.44 , pp. 1941-1949
    • Hsu, C.C.1    Chen, C.Y.2
  • 22
    • 34249299065 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting in a competitive market: A neural network approach
    • DOI 10.1016/j.epsr.2006.09.022, PII S0378779606002422
    • J.P.S. Catalao, S.J.P.S. Mariano, V.M.F. Mendes, and L.A.F.M. Ferreira Short-term electricity prices forecasting in a competitive market: a neural network approach Electr Power Syst Res 77 2007 1297 1304 (Pubitemid 46813211)
    • (2007) Electric Power Systems Research , vol.77 , Issue.10 , pp. 1297-1304
    • Catalao, J.P.S.1    Mariano, S.J.P.S.2    Mendes, V.M.F.3    Ferreira, L.A.F.M.4
  • 23
    • 34047099220 scopus 로고    scopus 로고
    • Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
    • DOI 10.1016/j.amc.2006.08.093, PII S0096300306011088
    • A. Azadeh, S.F. Ghaderi, S. Tarverdian, and M. Saberi Intergraion of artificial neural networks and genetic algorithm to predict electrical energy consumption Appl Math Comput 186 2007 1731 1741 (Pubitemid 46509532)
    • (2007) Applied Mathematics and Computation , vol.186 , Issue.2 , pp. 1731-1741
    • Azadeh, A.1    Ghaderi, S.F.2    Tarverdian, S.3    Saberi, M.4
  • 24
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • A. Azadeh, S.F. Ghaderi, and S. Sohrabkhani A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran Energy Policy 36 2008 2637 2644
    • (2008) Energy Policy , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 25
    • 33947661488 scopus 로고    scopus 로고
    • Forecasting electrical consumption by integration of Neural Network, time series and ANOVA
    • DOI 10.1016/j.amc.2006.08.094, PII S0096300306011106
    • A. Azadeh, S.F. Ghaderi, and S. Sohrabkhani Forecasting electrical consumption by integration of neural network, time series and ANOVA Appl Math Comput 186 2007 1753 1761 (Pubitemid 46497380)
    • (2007) Applied Mathematics and Computation , vol.186 , Issue.2 , pp. 1753-1761
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 26
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • W.-C. Hong Electric load forecasting by support vector model Appl Math Model 33 2009 2444 2454
    • (2009) Appl Math Model , vol.33 , pp. 2444-2454
    • Hong, W.-C.1
  • 27
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • DOI 10.1109/TPWRS.2005.860944
    • S. Fan, and L. Chen Short-term load forecasting based on an adaptive hybrid method IEEE Trans Power Syst 21 2006 392 401 (Pubitemid 43204739)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.1 , pp. 392-401
    • Fan, S.1    Chen, L.2
  • 28
    • 42749089472 scopus 로고    scopus 로고
    • Machine learning based switching model for electricity load forecasting
    • S. Fan, L. Chen, and W.J. Lee Machine learning based switching model for electricity load forecasting Energy Convers Manage 49 2008 1331 1344
    • (2008) Energy Convers Manage , vol.49 , pp. 1331-1344
    • Fan, S.1    Chen, L.2    Lee, W.J.3
  • 29
    • 84871719025 scopus 로고    scopus 로고
    • A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran
    • E.S. Mostafavi, S. Saeedi, R. Sarvar, H. Izadi Moud, and S.M. Mousavi A hybrid computational approach to estimate solar global radiation: an empirical evidence from Iran Energy 49 2013 204 210
    • (2013) Energy , vol.49 , pp. 204-210
    • Mostafavi, E.S.1    Saeedi, S.2    Sarvar, R.3    Izadi Moud, H.4    Mousavi, S.M.5
  • 32
    • 78650232140 scopus 로고    scopus 로고
    • Formulation of flow number of asphalt mixes using a hybrid computational method
    • A.H. Alavi, M. Ameri, A.H. Gandomi, and M.R. Mirzahosseini Formulation of flow number of asphalt mixes using a hybrid computational method Constr Build Mater 25 3 2011 1338 1355
    • (2011) Constr Build Mater , vol.25 , Issue.3 , pp. 1338-1355
    • Alavi, A.H.1    Ameri, M.2    Gandomi, A.H.3    Mirzahosseini, M.R.4
  • 33
    • 0030716641 scopus 로고    scopus 로고
    • Genetic programming model for long-term forecasting of electric power demand
    • PII S037877969601125X
    • D.G. Lee, B.W. Lee, and S.H. Chang Genetic programming model for long-term forecasting of electric power demand Electr Power Syst Res 40 1997 17 22 (Pubitemid 127412680)
    • (1997) Electric Power Systems Research , vol.40 , Issue.1 , pp. 17-22
    • Lee, D.G.1    Lee, B.W.2    Chang, S.H.3
  • 34
    • 66049111720 scopus 로고    scopus 로고
    • A linear genetic programming approach for modeling electricity demand prediction in Victoria
    • Australia: Adelaide
    • Bhattacharya M, Abraham A, Nath B. A linear genetic programming approach for modeling electricity demand prediction in Victoria. In: Proceedings of the hybrid information systems. Australia: Adelaide; 2001. p. 379-93.
    • (2001) Proceedings of the Hybrid Information Systems , pp. 379-393
    • Bhattacharya, M.1    Abraham, A.2    Nath, B.3
  • 36
    • 84958750028 scopus 로고
    • Genetic programming and simulated annealing: A hybrid method to evolve decision trees
    • Folino G, Pizzuti C, Spezzano G. Genetic programming and simulated annealing: a hybrid method to evolve decision trees. In: Proceedings of EuroGP'2000; 1802. p. 294-03.
    • (1802) Proceedings of EuroGP'2000 , pp. 294-303
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 38
    • 78651528039 scopus 로고    scopus 로고
    • High-precision modeling of uplift capacity of suction caissons using a hybrid computational method
    • A.H. Alavi, A.H. Gandomi, M. Mousavi, and A. Mollahasani High-precision modeling of uplift capacity of suction caissons using a hybrid computational method GeomechEng 2 4 2010 253 280
    • (2010) GeomechEng , vol.2 , Issue.4 , pp. 253-280
    • Alavi, A.H.1    Gandomi, A.H.2    Mousavi, M.3    Mollahasani, A.4
  • 39
    • 84879838436 scopus 로고    scopus 로고
    • New design equations for assessment of load carrying capacity of CSB: A machine learning approach
    • 10.1007/s00521-012-1138-4
    • P. Aminian, H. Niroomand, A.H. Gandomi, A.H. Alavi, and M. Arab Esmaeili New design equations for assessment of load carrying capacity of CSB: a machine learning approach Neural Compu Appl 2013 10.1007/s00521-012-1138-4
    • (2013) Neural Compu Appl
    • Aminian, P.1    Niroomand, H.2    Gandomi, A.H.3    Alavi, A.H.4    Arab Esmaeili, M.5
  • 41
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • (university of Western Australia). University of Waikato
    • Hall M, Smith L. Practical feature subset selection for machine learning. In: Proceedings of the Australian computer science conference (university of Western Australia). University of Waikato; 1996.
    • (1996) Proceedings of the Australian Computer Science Conference
    • Hall, M.1    Smith, L.2
  • 42
    • 77954757869 scopus 로고    scopus 로고
    • New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming
    • A.H. Gandomi, A.H. Alavi, and M.G. Sahab New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming Mater Struct 43 7 2010 963 983
    • (2010) Mater Struct , vol.43 , Issue.7 , pp. 963-983
    • Gandomi, A.H.1    Alavi, A.H.2    Sahab, M.G.3
  • 48
    • 41949116226 scopus 로고    scopus 로고
    • On some aspects of variable selection for partial least squares regression models
    • P.P. Roy, and K. Roy On some aspects of variable selection for partial least squares regression models QSAR Comb Sci 27 2008 302 313
    • (2008) QSAR Comb Sci , vol.27 , pp. 302-313
    • Roy, P.P.1    Roy, K.2
  • 50
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of Principal Ground-Motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing
    • A.H. Alavi, and A.H. Gandomi Prediction of Principal Ground-Motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing Comput Struct 89 23-24 2011 2176 2194
    • (2011) Comput Struct , vol.89 , Issue.2324 , pp. 2176-2194
    • Alavi, A.H.1    Gandomi, A.H.2
  • 51
    • 84878577014 scopus 로고    scopus 로고
    • Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets
    • A. Peyvandi, P. Soroushian, A.M. Balachandra, and K. Sobolev Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets Constr Build Mater 47 2013 111 117
    • (2013) Constr Build Mater , vol.47 , pp. 111-117
    • Peyvandi, A.1    Soroushian, P.2    Balachandra, A.M.3    Sobolev, K.4
  • 52
    • 84876943603 scopus 로고    scopus 로고
    • Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement
    • A. Peyvandi, P. Soroushian, and S. Jahangirnejad Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement Constr Build Mater 45 2013 36 44
    • (2013) Constr Build Mater , vol.45 , pp. 36-44
    • Peyvandi, A.1    Soroushian, P.2    Jahangirnejad, S.3
  • 53
    • 80052923685 scopus 로고    scopus 로고
    • Multi-Stage Genetic Programming: A New Strategy to Nonlinear System Modeling
    • A.H. Gandomi, and A.H. Alavi Multi-Stage Genetic Programming: A New Strategy to Nonlinear System Modeling Inf Sci 181 23 2011 5227 5239
    • (2011) Inf Sci , vol.181 , Issue.23 , pp. 5227-5239
    • Gandomi, A.H.1    Alavi, A.H.2
  • 55
    • 84862648743 scopus 로고    scopus 로고
    • Energy-Based Models for Assessment of Soil Liquefaction
    • A.H. Alavi, and A.H. Gandomi Energy-Based Models for Assessment of Soil Liquefaction Geosci Frontiers 3 4 2012 541 555
    • (2012) Geosci Frontiers , vol.3 , Issue.4 , pp. 541-555
    • Alavi, A.H.1    Gandomi, A.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.