-
1
-
-
44449127242
-
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model
-
Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. Ser. A 2008, 21:1-20.
-
(2008)
Discrete Contin. Dyn. Syst. Ser. A
, vol.21
, pp. 1-20
-
-
Allen, L.J.S.1
Bolker, B.M.2
Lou, Y.3
Nevai, A.L.4
-
2
-
-
0018656345
-
Population biology of infectious diseases: part I
-
Anderson R.M., May R.M. Population biology of infectious diseases: part I. Nature 1979, 280:361-367.
-
(1979)
Nature
, vol.280
, pp. 361-367
-
-
Anderson, R.M.1
May, R.M.2
-
5
-
-
33947704957
-
A Geometric Approach to Free Boundary Problems
-
American Mathematical Society, Providence, RI
-
Caffarelli L., Salsa S. A Geometric Approach to Free Boundary Problems. Grad. Stud. Math. 2005, vol. 68. American Mathematical Society, Providence, RI.
-
(2005)
Grad. Stud. Math.
, vol.68
-
-
Caffarelli, L.1
Salsa, S.2
-
7
-
-
0033536550
-
Update: West Nile-like viral encephalitis - New York, 1999
-
Update: West Nile-like viral encephalitis - New York, 1999. Morb. Mortal Wkly. Rep. 1999, 48:890-892. Center for Disease Control and Prevention (CDC).
-
(1999)
Morb. Mortal Wkly. Rep.
, vol.48
, pp. 890-892
-
-
-
8
-
-
84938761215
-
-
West Nile virus activity by time period and state, United States, 2013 (as of January 7, 2014).
-
Center for Disease Control and Prevention (CDC), West Nile virus activity by time period and state, United States, 2013 (as of January 7, 2014). http://www.cdc.gov/westnile/statsMaps/preliminaryMapsData/activitystatedate.html.
-
-
-
-
9
-
-
0034353709
-
A free boundary problem arising in a model of wound healing
-
Chen X.F., Friedman A. A free boundary problem arising in a model of wound healing. SIAM J. Math. Anal. 2000, 32:778-800.
-
(2000)
SIAM J. Math. Anal.
, vol.32
, pp. 778-800
-
-
Chen, X.F.1
Friedman, A.2
-
11
-
-
79954633426
-
Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II
-
Du Y.H., Guo Z.M. Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II. J. Differential Equations 2011, 250:4336-4366.
-
(2011)
J. Differential Equations
, vol.250
, pp. 4336-4366
-
-
Du, Y.H.1
Guo, Z.M.2
-
12
-
-
84881375787
-
A diffusive logistic model with a free boundary in time-periodic environment
-
Du Y.H., Guo Z.M., Peng R. A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 2013, 265:2089-2142.
-
(2013)
J. Funct. Anal.
, vol.265
, pp. 2089-2142
-
-
Du, Y.H.1
Guo, Z.M.2
Peng, R.3
-
13
-
-
77955814290
-
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary
-
Du Y.H., Lin Z.G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 2010, 42:377-405.
-
(2010)
SIAM J. Math. Anal.
, vol.42
, pp. 377-405
-
-
Du, Y.H.1
Lin, Z.G.2
-
15
-
-
84907486785
-
The diffusive competition model with a free boundary: invasion of a superior or inferior competitor
-
Du Y.H., Lin Z.G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor. Discrete Contin. Dyn. Syst. Ser. B 2014, 19:3105-3132.
-
(2014)
Discrete Contin. Dyn. Syst. Ser. B
, vol.19
, pp. 3105-3132
-
-
Du, Y.H.1
Lin, Z.G.2
-
16
-
-
33645314346
-
Remarks on the uniqueness problem for the logistic equation on the entire space
-
Du Y.H., Li L.S. Remarks on the uniqueness problem for the logistic equation on the entire space. Bull. Aust. Math. Soc. 2006, 73:129-137.
-
(2006)
Bull. Aust. Math. Soc.
, vol.73
, pp. 129-137
-
-
Du, Y.H.1
Li, L.S.2
-
17
-
-
0031992574
-
Backwards bifurcations and catastrophe in simple models of fatal diseases
-
Dushoff J., Huang W., Castillo-Chavez C. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 1998, 36:227-248.
-
(1998)
J. Math. Biol.
, vol.36
, pp. 227-248
-
-
Dushoff, J.1
Huang, W.2
Castillo-Chavez, C.3
-
18
-
-
84920018827
-
Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries
-
Gu H., Lin Z.G., Lou B.D. Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries. Proc. Amer. Math. Soc. 2015, 143:1109-1117.
-
(2015)
Proc. Amer. Math. Soc.
, vol.143
, pp. 1109-1117
-
-
Gu, H.1
Lin, Z.G.2
Lou, B.D.3
-
19
-
-
84870325576
-
On a free boundary problem for a two-species weak competition system
-
Guo J.S., Wu C.H. On a free boundary problem for a two-species weak competition system. J. Dynam. Differential Equations 2012, 24:873-895.
-
(2012)
J. Dynam. Differential Equations
, vol.24
, pp. 873-895
-
-
Guo, J.S.1
Wu, C.H.2
-
20
-
-
77954643852
-
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission
-
Huang W., Han M., Liu K. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 2010, 7:51-66.
-
(2010)
Math. Biosci. Eng.
, vol.7
, pp. 51-66
-
-
Huang, W.1
Han, M.2
Liu, K.3
-
21
-
-
84879304733
-
A free boundary problem for a reaction-diffusion equation appearing in ecology
-
Kaneko Y., Yamada Y. A free boundary problem for a reaction-diffusion equation appearing in ecology. Adv. Math. Sci. Appl. 2011, 21:467-492.
-
(2011)
Adv. Math. Sci. Appl.
, vol.21
, pp. 467-492
-
-
Kaneko, Y.1
Yamada, Y.2
-
23
-
-
0003690985
-
-
Amer. Math. Soc, Providence, RI
-
Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N. Linear and Quasilinear Equations of Parabolic Type 1968, Amer. Math. Soc, Providence, RI.
-
(1968)
Linear and Quasilinear Equations of Parabolic Type
-
-
Ladyzenskaja, O.A.1
Solonnikov, V.A.2
Ural'ceva, N.N.3
-
24
-
-
84899653876
-
The spreading front of invasive species in favorable habitat or unfavorable habitat
-
Lei C.X., Lin Z.G., Zhang Q.Y. The spreading front of invasive species in favorable habitat or unfavorable habitat. J. Differential Equations 2014, 257:145-166.
-
(2014)
J. Differential Equations
, vol.257
, pp. 145-166
-
-
Lei, C.X.1
Lin, Z.G.2
Zhang, Q.Y.3
-
25
-
-
34547492347
-
A free boundary problem for a predator-prey model
-
Lin Z.G. A free boundary problem for a predator-prey model. Nonlinearity 2007, 20:1883-1892.
-
(2007)
Nonlinearity
, vol.20
, pp. 1883-1892
-
-
Lin, Z.G.1
-
26
-
-
67349246788
-
Spatial spreading of West Nile virus described by traveling waves
-
Maidana N.A., Yang H. Spatial spreading of West Nile virus described by traveling waves. J. Theoret. Biol. 2009, 258:403-417.
-
(2009)
J. Theoret. Biol.
, vol.258
, pp. 403-417
-
-
Maidana, N.A.1
Yang, H.2
-
27
-
-
84972551309
-
Free boundary problems for some reaction-diffusion equations
-
Mimura M., Yamada Y., Yotsutani S. Free boundary problems for some reaction-diffusion equations. Hiroshima Math. J. 1987, 17:241-280.
-
(1987)
Hiroshima Math. J.
, vol.17
, pp. 241-280
-
-
Mimura, M.1
Yamada, Y.2
Yotsutani, S.3
-
28
-
-
67349178620
-
Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I
-
Peng R. Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I. J. Differential Equations 2009, 247:1096-1119.
-
(2009)
J. Differential Equations
, vol.247
, pp. 1096-1119
-
-
Peng, R.1
-
29
-
-
84880326333
-
Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement
-
Peng R., Yi F.Q. Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys. D 2013, 259:8-25.
-
(2013)
Phys. D
, vol.259
, pp. 8-25
-
-
Peng, R.1
Yi, F.Q.2
-
30
-
-
84859802133
-
A reaction-diffusion SIS epidemic model in a time-periodic environment
-
Peng R., Zhao X.Q. A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 2012, 25:1451-1471.
-
(2012)
Nonlinearity
, vol.25
, pp. 1451-1471
-
-
Peng, R.1
Zhao, X.Q.2
-
32
-
-
67650457431
-
Numerical approximation of a free boundary problem for a predator-prey model
-
Razvan S., Gabriel D. Numerical approximation of a free boundary problem for a predator-prey model. Numer. Anal. Appl. 2009, 5434:548-555.
-
(2009)
Numer. Anal. Appl.
, vol.5434
, pp. 548-555
-
-
Razvan, S.1
Gabriel, D.2
-
33
-
-
0003814972
-
-
American Mathematical Society, Providence, RI
-
Rubinstein L.I. The Stefan Problem 1971, American Mathematical Society, Providence, RI.
-
(1971)
The Stefan Problem
-
-
Rubinstein, L.I.1
-
35
-
-
0036845274
-
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
-
van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180:29-48.
-
(2002)
Math. Biosci.
, vol.180
, pp. 29-48
-
-
van den Driessche, P.1
Watmough, J.2
-
36
-
-
77955273577
-
The backward bifurcation in compartmental models for West Nile virus
-
Wan H., Zhu H. The backward bifurcation in compartmental models for West Nile virus. Math. Biosci. 2010, 227(1):20-28.
-
(2010)
Math. Biosci.
, vol.227
, Issue.1
, pp. 20-28
-
-
Wan, H.1
Zhu, H.2
-
37
-
-
84920771768
-
The diffusive logistic equation with a free boundary and sign-changing coefficient
-
Wang M.X. The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differential Equations 2015, 258:1252-1266.
-
(2015)
J. Differential Equations
, vol.258
, pp. 1252-1266
-
-
Wang, M.X.1
-
38
-
-
84912025625
-
Free boundary problems for a Lotka-Volterra competition system
-
Wang M.X., Zhao J.F. Free boundary problems for a Lotka-Volterra competition system. J. Dynam. Differential Equations 2014, 26:655-672.
-
(2014)
J. Dynam. Differential Equations
, vol.26
, pp. 655-672
-
-
Wang, M.X.1
Zhao, J.F.2
-
39
-
-
0028726379
-
Population size dependent incidence in models for diseases without immunity
-
Zhou J., Hethcote H.W. Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 1994, 32:809-834.
-
(1994)
J. Math. Biol.
, vol.32
, pp. 809-834
-
-
Zhou, J.1
Hethcote, H.W.2
-
40
-
-
84892478497
-
The diffusive logistic model with a free boundary in heterogeneous environment
-
Zhou P., Xiao D.M. The diffusive logistic model with a free boundary in heterogeneous environment. J. Differential Equations 2014, 256:1927-1954.
-
(2014)
J. Differential Equations
, vol.256
, pp. 1927-1954
-
-
Zhou, P.1
Xiao, D.M.2
|