메뉴 건너뛰기




Volumn 19, Issue 10, 2014, Pages 3105-3132

The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor

Author keywords

Diffusive competition model; Free boundary; Invasive population; Spreading vanishing dichotomy

Indexed keywords


EID: 84907486785     PISSN: 15313492     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcdsb.2014.19.3105     Document Type: Article
Times cited : (170)

References (17)
  • 1
    • 84877342682 scopus 로고    scopus 로고
    • Spreading speed revisited: Analysis of a free boundary model
    • G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
    • (2012) Netw. Heterog. Media , vol.7 , pp. 583-603
    • Bunting, G.1    Du, Y.2    Krakowski, K.3
  • 2
    • 0034353709 scopus 로고    scopus 로고
    • A free boundary problem arising in a model of wound healing
    • X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.
    • (2000) SIAM J. Math. Anal. , vol.32 , pp. 778-800
    • Chen, X.F.1    Friedman, A.2
  • 4
    • 79954633426 scopus 로고    scopus 로고
    • Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II
    • Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011), 4336-4366.
    • (2011) J. Diff. Eqns. , vol.250 , pp. 4336-4366
    • Du, Y.1    Guo, Z.M.2
  • 5
    • 77955814290 scopus 로고    scopus 로고
    • Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary
    • Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
    • (2010) SIAM J. Math. Anal. , vol.42 , pp. 377-405
    • Du, Y.1    Lin, Z.G.2
  • 6
    • 0000130586 scopus 로고    scopus 로고
    • Logistic type equations on RN by a squeezing method involving boundary blow-up solutions
    • Y. Du and L. Ma, Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.
    • (2001) J. London Math. Soc. , vol.64 , pp. 107-124
    • Du, Y.1    Ma, L.2
  • 7
    • 84870325576 scopus 로고    scopus 로고
    • On a free boundary problem for a two-species weak competition system
    • J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Diff. Equat., 24 (2012), 873-895.
    • (2012) J. Dyn. Diff. Equat. , vol.24 , pp. 873-895
    • Guo, J.-S.1    Wu, C.-H.2
  • 8
    • 0030737408 scopus 로고    scopus 로고
    • Fisher wave fronts for the Lotka-Volterra competition model with diffusion
    • Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonl. Anal. TMA, 28 (1997), 145-164.
    • (1997) Nonl. Anal. TMA , vol.28 , pp. 145-164
    • Kan-On, Y.1
  • 9
    • 0003045121 scopus 로고
    • The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains
    • K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Diff. Eqns., 58 (1985), 15-21.
    • (1985) J. Diff. Eqns. , vol.58 , pp. 15-21
    • Kishimoto, K.1    Weinberger, H.F.2
  • 12
    • 34547492347 scopus 로고    scopus 로고
    • A free boundary problem for a predator-prey model
    • Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
    • (2007) Nonlinearity , vol.20 , pp. 1883-1892
    • Lin, Z.G.1
  • 13
    • 80955143218 scopus 로고    scopus 로고
    • An entire solution to the Lotka-Volterra competition-diffusion equations
    • Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
    • (2009) SIAM J. Math. Anal. , vol.40 , pp. 2217-2240
    • Morita, Y.1    Tachibana, K.2
  • 16
    • 84897667515 scopus 로고    scopus 로고
    • On some free boundary problems of the prey-predator model
    • M. X. Wang, On some free boundary problems of the prey-predator model, J. Diff. Eqns., 256 (2014), 3365-3394.
    • (2014) J. Diff. Eqns. , vol.256 , pp. 3365-3394
    • Wang, M.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.