-
1
-
-
84877342682
-
Spreading speed revisited: Analysis of a free boundary model
-
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
-
(2012)
Netw. Heterog. Media
, vol.7
, pp. 583-603
-
-
Bunting, G.1
Du, Y.2
Krakowski, K.3
-
2
-
-
0034353709
-
A free boundary problem arising in a model of wound healing
-
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.
-
(2000)
SIAM J. Math. Anal.
, vol.32
, pp. 778-800
-
-
Chen, X.F.1
Friedman, A.2
-
4
-
-
79954633426
-
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II
-
Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011), 4336-4366.
-
(2011)
J. Diff. Eqns.
, vol.250
, pp. 4336-4366
-
-
Du, Y.1
Guo, Z.M.2
-
5
-
-
77955814290
-
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary
-
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
-
(2010)
SIAM J. Math. Anal.
, vol.42
, pp. 377-405
-
-
Du, Y.1
Lin, Z.G.2
-
6
-
-
0000130586
-
Logistic type equations on RN by a squeezing method involving boundary blow-up solutions
-
Y. Du and L. Ma, Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.
-
(2001)
J. London Math. Soc.
, vol.64
, pp. 107-124
-
-
Du, Y.1
Ma, L.2
-
7
-
-
84870325576
-
On a free boundary problem for a two-species weak competition system
-
J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Diff. Equat., 24 (2012), 873-895.
-
(2012)
J. Dyn. Diff. Equat.
, vol.24
, pp. 873-895
-
-
Guo, J.-S.1
Wu, C.-H.2
-
8
-
-
0030737408
-
Fisher wave fronts for the Lotka-Volterra competition model with diffusion
-
Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonl. Anal. TMA, 28 (1997), 145-164.
-
(1997)
Nonl. Anal. TMA
, vol.28
, pp. 145-164
-
-
Kan-On, Y.1
-
9
-
-
0003045121
-
The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains
-
K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Diff. Eqns., 58 (1985), 15-21.
-
(1985)
J. Diff. Eqns.
, vol.58
, pp. 15-21
-
-
Kishimoto, K.1
Weinberger, H.F.2
-
10
-
-
0003690985
-
-
Amer. Math. Soc., Providence, RI
-
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
-
(1968)
Linear and Quasilinear Equations of Parabolic Type
-
-
Ladyzenskaja, O.A.1
Solonnikov, V.A.2
Ural'ceva, N.N.3
-
12
-
-
34547492347
-
A free boundary problem for a predator-prey model
-
Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.
-
(2007)
Nonlinearity
, vol.20
, pp. 1883-1892
-
-
Lin, Z.G.1
-
13
-
-
80955143218
-
An entire solution to the Lotka-Volterra competition-diffusion equations
-
Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
-
(2009)
SIAM J. Math. Anal.
, vol.40
, pp. 2217-2240
-
-
Morita, Y.1
Tachibana, K.2
-
16
-
-
84897667515
-
On some free boundary problems of the prey-predator model
-
M. X. Wang, On some free boundary problems of the prey-predator model, J. Diff. Eqns., 256 (2014), 3365-3394.
-
(2014)
J. Diff. Eqns.
, vol.256
, pp. 3365-3394
-
-
Wang, M.X.1
|