-
3
-
-
84862537954
-
12 spinel: The full static picture from electron microscopy
-
12 spinel: the full static picture from electron microscopy Adv. Mater. 2012, 24, 3233-3238 10.1002/adma.201200450
-
(2012)
Adv. Mater.
, vol.24
, pp. 3233-3238
-
-
Lu, X.1
Zhao, L.2
He, X.3
Xiao, R.4
Gu, L.5
Hu, Y.-S.6
Li, H.7
Wang, Z.8
Duan, X.9
Chen, L.10
Maier, J.11
Ikuhara, Y.12
-
5
-
-
77955509317
-
12 as anode material of lithium ion battery
-
12 as anode material of lithium ion battery J. Phys. Chem. Solids 2010, 71, 1236-1242 10.1016/j.jpcs.2010.05.001
-
(2010)
J. Phys. Chem. Solids
, vol.71
, pp. 1236-1242
-
-
Yi, T.-F.1
Jiang, L.-J.2
Shu, J.3
Yue, C.-B.4
Zhu, R.-S.5
Qiao, H.-B.6
-
7
-
-
79958115032
-
12 in supercritical water
-
12 in supercritical water Electrochem. Commun. 2011, 13, 650-653 10.1016/j.elecom.2011.03.037
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 650-653
-
-
Nugroho, A.1
Kim, S.J.2
Chung, K.Y.3
Cho, B.-W.4
Lee, Y.-W.5
Kim, J.6
-
9
-
-
84896269819
-
12-δ by molybdenum doping in a reducing atmosphere
-
12-δ by molybdenum doping in a reducing atmosphere Sci. Rep. 2014, 4, 4350 10.1038/srep04350
-
(2014)
Sci. Rep.
, vol.4
, pp. 4350
-
-
Song, H.1
Jeong, T.-G.2
Moon, Y.H.3
Chun, H.-H.4
Chung, K.Y.5
Kim, H.S.6
Cho, B.W.7
Kim, Y.-T.8
-
10
-
-
84870881759
-
12 negative-electrode materials for high-rate Li-ion batteries
-
12 negative-electrode materials for high-rate Li-ion batteries Energy Environ. Sci. 2012, 5, 9903-9913 10.1039/c2ee22734g
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9903-9913
-
-
Song, H.1
Yun, S.-W.2
Chun, H.-H.3
Kim, M.-G.4
Chung, K.Y.5
Kim, H.S.6
Cho, B.-W.7
Kim, Y.-T.8
-
11
-
-
79953660835
-
Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries
-
Jung, H.-G.; Myung, S.-T.; Yoon, C.-S.; Son, S.-B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y.-K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries Energy Environ. Sci. 2011, 4, 1345-1351 10.1039/c0ee00620c
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1345-1351
-
-
Jung, H.-G.1
Myung, S.-T.2
Yoon, C.-S.3
Son, S.-B.4
Oh, K.H.5
Amine, K.6
Scrosati, B.7
Sun, Y.-K.8
-
12
-
-
84907567346
-
Graphene-based nanocomposite anodes for lithium-ion batteries
-
Sun, W.; Wang, Y. Graphene-based nanocomposite anodes for lithium-ion batteries Nanoscale 2014, 6, 11528-11552 10.1039/C4NR02999B
-
(2014)
Nanoscale
, vol.6
, pp. 11528-11552
-
-
Sun, W.1
Wang, Y.2
-
13
-
-
84887978406
-
Graphene-based nanocomposites: Preparation, functionalization, and energy and environmental applications
-
Chang, H.; Wu, H. Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications Energy Environ. Sci. 2013, 6, 3483-3507 10.1039/c3ee42518e
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3483-3507
-
-
Chang, H.1
Wu, H.2
-
14
-
-
79960237024
-
Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
-
Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability Nano Lett. 2011, 11, 2644-2647 10.1021/nl200658a
-
(2011)
Nano Lett.
, vol.11
, pp. 2644-2647
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
Robinson, J.T.4
Li, Y.5
Jackson, A.6
Cui, Y.7
Dai, H.8
-
15
-
-
77957714684
-
Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
Wang, H.; Cui, L.-F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries J. Am. Chem. Soc. 2010, 132, 13978-13980 10.1021/ja105296a
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13978-13980
-
-
Wang, H.1
Cui, L.-F.2
Yang, Y.3
Casalongue, H.S.4
Robinson, J.T.5
Liang, Y.6
Cui, Y.7
Dai, H.8
-
16
-
-
77955875714
-
4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cycle performance
-
4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cycle performance ACS Nano 2010, 4, 3187-3194 10.1021/nn100740x
-
(2010)
ACS Nano
, vol.4
, pp. 3187-3194
-
-
Wu, Z.-S.1
Ren, W.2
Wen, L.3
Gao, L.4
Zhao, J.5
Chen, Z.6
Zhou, G.7
Li, F.8
Cheng, H.-M.9
-
17
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
-
(1996)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
Furthmüller, J.2
-
18
-
-
4243943295
-
Generalized Gradient Approximation Made Simple
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
20
-
-
33750559983
-
Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction
-
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction J. Comput. Chem. 2006, 27, 1787-1799 10.1002/jcc.20495
-
(2006)
J. Comput. Chem.
, vol.27
, pp. 1787-1799
-
-
Grimme, S.1
-
21
-
-
33646343022
-
Oxidation energies of transition metal oxides within the GGA+U framework
-
Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 195107 10.1103/PhysRevB.73.195107
-
(2006)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.73
-
-
Wang, L.1
Maxisch, T.2
Ceder, G.3
-
22
-
-
78650092372
-
Improved synthesis of graphene oxide
-
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide ACS Nano 2010, 4, 4806-4814 10.1021/nn1006368
-
(2010)
ACS Nano
, vol.4
, pp. 4806-4814
-
-
Marcano, D.C.1
Kosynkin, D.V.2
Berlin, J.M.3
Sinitskii, A.4
Sun, Z.5
Slesarev, A.6
Alemany, L.B.7
Lu, W.8
Tour, J.M.9
-
23
-
-
84897144421
-
Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals
-
Lincheneau, C.; Amelia, M.; Oszajca, M.; Boccia, A.; D'Orazi, F.; Madrigale, M.; Zanoni, R.; Mazzaro, R.; Ortolani, L.; Morandi, V.; Silvi, S.; Szaciłowski, K.; Credi, A. Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals J. Mater. Chem. C 2014, 2, 2877-2886 10.1039/c3tc32385d
-
(2014)
J. Mater. Chem. C
, vol.2
, pp. 2877-2886
-
-
Lincheneau, C.1
Amelia, M.2
Oszajca, M.3
Boccia, A.4
D'Orazi, F.5
Madrigale, M.6
Zanoni, R.7
Mazzaro, R.8
Ortolani, L.9
Morandi, V.10
Silvi, S.11
Szaciłowski, K.12
Credi, A.13
-
24
-
-
84871540268
-
Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared
-
Zhang, W.; Zhang, H.; Feng, Y.; Zhong, X. Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared ACS Nano 2012, 6, 11066-11073 10.1021/nn304765k
-
(2012)
ACS Nano
, vol.6
, pp. 11066-11073
-
-
Zhang, W.1
Zhang, H.2
Feng, Y.3
Zhong, X.4
-
25
-
-
80053463993
-
Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods
-
Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods Small 2011, 7, 2685-2702 10.1002/smll.201002022
-
(2011)
Small
, vol.7
, pp. 2685-2702
-
-
Kwon, S.G.1
Hyeon, T.2
-
26
-
-
0042733743
-
Generalized and facile synthesis of semiconducting metal sulfide nanocrystals
-
Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals J. Am. Chem. Soc. 2003, 125, 11100-11105 10.1021/ja0357902
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11100-11105
-
-
Joo, J.1
Na, H.B.2
Yu, T.3
Yu, J.H.4
Kim, Y.W.5
Wu, F.6
Zhang, J.Z.7
Hyeon, T.8
-
27
-
-
84892584646
-
Synthesis, characterization, and application of ultrasmall nanoparticles
-
Kim, B. H.; Hackett, M. J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles Chem. Mater. 2014, 26, 59-71 10.1021/cm402225z
-
(2014)
Chem. Mater.
, vol.26
, pp. 59-71
-
-
Kim, B.H.1
Hackett, M.J.2
Park, J.3
Hyeon, T.4
-
28
-
-
84887895690
-
Atomistic structure of a spinel Li4Ti5O12(111) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry
-
Kitta, M.; Matsuda, T.; Maeda, Y.; Akita, T.; Tanaka, S.; Kido, Y.; Kohyama, M. Atomistic structure of a spinel Li4Ti5O12(111) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry Surf. Sci. 2014, 619, 5-9 10.1016/j.susc.2013.09.026
-
(2014)
Surf. Sci.
, vol.619
, pp. 5-9
-
-
Kitta, M.1
Matsuda, T.2
Maeda, Y.3
Akita, T.4
Tanaka, S.5
Kido, Y.6
Kohyama, M.7
-
29
-
-
84867760196
-
12 explained by anisotropic surface lithium insertion
-
12 explained by anisotropic surface lithium insertion ACS Nano 2012, 6, 8702-8712 10.1021/nn302278m
-
(2012)
ACS Nano
, vol.6
, pp. 8702-8712
-
-
Ganapathy, S.1
Wagemaker, M.2
-
30
-
-
80051757950
-
12 in lithium ion batteries: A combined experimental and theoretical study
-
12 in lithium ion batteries: a combined experimental and theoretical study Phys. Chem. Chem. Phys. 2011, 13, 15127-15133 10.1039/c1cp21513b
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 15127-15133
-
-
Ding, Z.1
Zhao, L.2
Suo, L.3
Jiao, Y.4
Meng, S.5
Hu, Y.-S.6
Wang, Z.7
Chen, L.8
-
31
-
-
84884545392
-
2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation
-
2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation Appl. Catal., B 2014, 144, 893-899 10.1016/j.apcatb.2013.08.030
-
(2014)
Appl. Catal., B
, vol.144
, pp. 893-899
-
-
Yu, S.1
Yun, H.J.2
Kim, Y.H.3
Yi, J.4
|