메뉴 건너뛰기




Volumn 15, Issue 1, 2015, Pages

A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes

Author keywords

Calibration; Marginal predictions; Random effects model

Indexed keywords

ALGORITHM; CALIBRATION; CLUSTER ANALYSIS; COMPUTER SIMULATION; HUMAN; MEDICAL RESEARCH; OUTCOME ASSESSMENT; PROCEDURES; REPRODUCIBILITY; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 84938520011     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-015-0046-6     Document Type: Article
Times cited : (29)

References (13)
  • 3
    • 84873734039 scopus 로고    scopus 로고
    • Prediction models for clustered data: Comparison of a random intercept and standard regression model
    • 10.1186/1471-2288-13-19 3658967 23414436
    • Bouwmeester W, Twisk JW, Kappen TH, van Klei WA, Moons KG, Vergouwe Y. Prediction models for clustered data: comparison of a random intercept and standard regression model. BMC Med Res Methodol. 2013;13:19. doi: 10.1186/1471-2288-13-19.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 19
    • Bouwmeester, W.1    Twisk, J.W.2    Kappen, T.H.3    Van Klei, W.A.4    Moons, K.G.5    Vergouwe, Y.6
  • 4
    • 65649115103 scopus 로고    scopus 로고
    • Prediction in multilevel generalized linear models
    • Skrondal A, Rabe-Hesketh S. Prediction in multilevel generalized linear models. J R Stat Soc A Stat Soc. 2009;172(3):659-87. doi: 10.1111/j.1467-985X.2009.00587.x.
    • (2009) J R Stat Soc A Stat Soc , vol.172 , Issue.3 , pp. 659-687
    • Skrondal, A.1    Rabe-Hesketh, S.2
  • 7
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • 1:STN:280:DyaL1M7ms1Onuw%3D%3D 3233245
    • Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44(4):1049-60.
    • (1988) Biometrics , vol.44 , Issue.4 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 8
    • 77449131310 scopus 로고    scopus 로고
    • The Intra-Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions
    • 10.1111/j.1751-5823.2009.00092.x
    • Eldridge SM, Ukoumunne OC, Carlin JB. The Intra-Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions. Int Stat Rev. 2009;77(3):378-94. doi: 10.1111/j.1751-5823.2009.00092.x.
    • (2009) Int Stat Rev , vol.77 , Issue.3 , pp. 378-394
    • Eldridge, S.M.1    Ukoumunne, O.C.2    Carlin, J.B.3
  • 9
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the Performance of Prediction Models A Framework for Traditional and Novel Measures
    • 3575184 20010215
    • Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the Performance of Prediction Models A Framework for Traditional and Novel Measures. Epidemiology. 2010;21(1):128-38.
    • (2010) Epidemiology , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3    Gerds, T.4    Gonen, M.5    Obuchowski, N.6
  • 10
    • 0035530911 scopus 로고    scopus 로고
    • Application of Shrinkage Techniques in Logistic Regression Analysis: A Case Study
    • Steyerberg EW, Eijkemans MJC, Habbema JDF. Application of Shrinkage Techniques in Logistic Regression Analysis: A Case Study. Stat Neerlandica. 2001;55(1):76-88.
    • (2001) Stat Neerlandica , vol.55 , Issue.1 , pp. 76-88
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Habbema, J.D.F.3
  • 11
    • 84918827339 scopus 로고    scopus 로고
    • Review of methods for handling confounding by cluster and informative cluster size in clustered data
    • 10.1002/sim.6277 4320764 25087978
    • Seaman S, Pavlou M, Copas A. Review of methods for handling confounding by cluster and informative cluster size in clustered data. Stat Med. 2014;33(30):5371-87. doi: 10.1002/sim.6277.
    • (2014) Stat Med , vol.33 , Issue.30 , pp. 5371-5387
    • Seaman, S.1    Pavlou, M.2    Copas, A.3
  • 12
    • 33750290366 scopus 로고    scopus 로고
    • Separating between- and within-cluster covariate effects by using conditional and partitioning methods
    • Neuhaus JM, McCulloch CE. Separating between- and within-cluster covariate effects by using conditional and partitioning methods. J R Stat Soc B. 2006;68(5):859-72. doi: 10.1111/j.1467-9868.2006.00570.x.
    • (2006) J R Stat Soc B , vol.68 , Issue.5 , pp. 859-872
    • Neuhaus, J.M.1    McCulloch, C.E.2
  • 13
    • 79952156779 scopus 로고    scopus 로고
    • Estimation of covariate effects in generalized linear mixed models with informative cluster sizes
    • Neuhaus JM, McCulloch CE. Estimation of covariate effects in generalized linear mixed models with informative cluster sizes. Biometrika. 2011;98(1):147-62. doi: 10.1093/biomet/asq066.
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 147-162
    • Neuhaus, J.M.1    McCulloch, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.