메뉴 건너뛰기




Volumn 83, Issue , 2015, Pages 90-100

Modeling driver stop/run behavior at the onset of a yellow indication considering driver run tendency and roadway surface conditions

Author keywords

Classification; Dilemma zone; Run stop behavior; Yellow indication

Indexed keywords

ADAPTIVE BOOSTING; ADVANCED DRIVER ASSISTANCE SYSTEMS; AMPHIBIOUS VEHICLES; ARTIFICIAL INTELLIGENCE; AUTOMOBILE DRIVERS; CLASSIFICATION (OF INFORMATION); CRASHWORTHINESS; DECISION TREES; DESIGN; HIGHWAY ACCIDENTS; INTELLIGENT SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES; TRAFFIC CONTROL; TRAFFIC SIGNALS;

EID: 84938339732     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2015.06.016     Document Type: Article
Times cited : (29)

References (49)
  • 3
    • 84986211696 scopus 로고    scopus 로고
    • A behavioral modeling framework of driver behavior at onset of yellow a indication at signalized intersections
    • Presented at the Washington, D.C
    • A.M.M. Amer, H.A. Rakha, and I. El-Shawarby A behavioral modeling framework of driver behavior at onset of yellow a indication at signalized intersections Presented at the Transportation Research Board 89th Annual Meeting Washington, D.C 2010
    • (2010) Transportation Research Board 89th Annual Meeting
    • Amer, A.M.M.1    Rakha, H.A.2    El-Shawarby, I.3
  • 4
    • 84904614336 scopus 로고    scopus 로고
    • Scalable nonparametric parsing for segmentation and recognition of high-quantity, low-cost highway assets from car-mounted video streams
    • V. Balali, and M. Golparvar-Fard Scalable nonparametric parsing for segmentation and recognition of high-quantity, low-cost highway assets from car-mounted video streams Construction Research Congress 2014@ sConstruction in a Global Network 2014 120 129
    • (2014) Construction Research Congress 2014@ SConstruction in a Global Network , pp. 120-129
    • Balali, V.1    Golparvar-Fard, M.2
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 34547228685 scopus 로고    scopus 로고
    • The effect of yellow light onset time on older and younger drivers' perception response time (PRT) and intersection behavior
    • J.K. Caird, S. Chisholm, C.J. Edwards, and J.I. Creaser The effect of yellow light onset time on older and younger drivers' perception response time (PRT) and intersection behavior Transp. Res. Part F: Traffic Psychol. Behav. 10 2007 383 396
    • (2007) Transp. Res. Part F: Traffic Psychol. Behav. , vol.10 , pp. 383-396
    • Caird, J.K.1    Chisholm, S.2    Edwards, C.J.3    Creaser, J.I.4
  • 12
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • R. Clarke, H.W. Ressom, A. Wang, J. Xuan, M.C. Liu, E.A. Gehan, and et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data Nat. Rev. Cancer 8 2008 37 49
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6
  • 17
    • 2342622786 scopus 로고    scopus 로고
    • Leave one out error, stability, and generalization of voting combinations of classifiers
    • T. Evgeniou, M. Pontil, and A. Elisseeff Leave one out error, stability, and generalization of voting combinations of classifiers Mach. Learn. 55 2004 71 97
    • (2004) Mach. Learn. , vol.55 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 19
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • J. Friedman, T. Hastie, and R. Tibshirani Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) Ann. Stat. 28 2000 337 407
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 0001554997 scopus 로고
    • The problem of the amber signal light in traffic flow
    • D. Gazis, R. Herman, and A. Maradudin The problem of the amber signal light in traffic flow Oper. Res. 8 1960 112 132
    • (1960) Oper. Res. , vol.8 , pp. 112-132
    • Gazis, D.1    Herman, R.2    Maradudin, A.3
  • 22
    • 84938352520 scopus 로고    scopus 로고
    • Dynamic driver's perception of dilemma zone: Experimental design and analysis of driver's learning in a simulator study
    • Washington, D.C
    • S. Ghanipoor Machiani, and M. Abbas Dynamic driver's perception of dilemma zone: experimental design and analysis of driver's learning in a simulator study The 93rd Annual Meeting of the Transportation Research Board Washington, D.C 2014
    • (2014) The 93rd Annual Meeting of the Transportation Research Board
    • Ghanipoor Machiani, S.1    Abbas, M.2
  • 23
    • 84938359703 scopus 로고    scopus 로고
    • Predicting drivers decision in dilemma zone in a driving simulator environment using canonical discriminant analysis
    • Washington, D.C
    • S. Ghanipoor Machiani, and M. Abbas Predicting drivers decision in dilemma zone in a driving simulator environment using canonical discriminant analysis The 93rd Annual Meeting of the Transportation Research Board Washington, D.C 2014
    • (2014) The 93rd Annual Meeting of the Transportation Research Board
    • Ghanipoor Machiani, S.1    Abbas, M.2
  • 24
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. Hsu, and C.-J. Lin A comparison of methods for multiclass support vector machines IEEE Trans. Neural Netw. 13 2002 415 425
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 26
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430
    • (2000) Neural Netw. , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 27
    • 84938380819 scopus 로고    scopus 로고
    • Developing a support vector machine (SVM) classifier for transportation mode identification by using mobile phone sensor data
    • A. Jahangiri, and H. Rakha Developing a support vector machine (SVM) classifier for transportation mode identification by using mobile phone sensor data Transportation Research Board 93rd Annual Meeting 2014
    • (2014) Transportation Research Board 93rd Annual Meeting
    • Jahangiri, A.1    Rakha, H.2
  • 28
    • 84959525056 scopus 로고    scopus 로고
    • Applying machine learning techniques to transportation mode recognition using mobile phone sensor data
    • PP
    • A. Jahangiri, and H.A. Rakha Applying machine learning techniques to transportation mode recognition using mobile phone sensor data IEEE Trans. Intell. Transp. Syst. PP 2015 1 12
    • (2015) IEEE Trans. Intell. Transp. Syst. , pp. 1-12
    • Jahangiri, A.1    Rakha, H.A.2
  • 30
    • 0035470107 scopus 로고    scopus 로고
    • Keeping cars from crashing
    • W.D. Jones Keeping cars from crashing IEEE Spectr. 38 2001 40 45
    • (2001) IEEE Spectr. , vol.38 , pp. 40-45
    • Jones, W.D.1
  • 31
    • 84938376018 scopus 로고    scopus 로고
    • Designing yellow intervals for rainy and wet roadway conditions
    • H. Li, H. Rakha, and I. El-Shawarby Designing yellow intervals for rainy and wet roadway conditions Int. J. Transp. Sci. Technol. 1 2012 171 190
    • (2012) Int. J. Transp. Sci. Technol. , vol.1 , pp. 171-190
    • Li, H.1    Rakha, H.2    El-Shawarby, I.3
  • 33
    • 84863148435 scopus 로고    scopus 로고
    • Empirical study of driver responses during the yellow signal phase at six Maryland intersections
    • Y. Liu, G. Chang, and J. Yu Empirical study of driver responses during the yellow signal phase at six Maryland intersections J. Transp. Eng. 138 2012 31 42
    • (2012) J. Transp. Eng. , vol.138 , pp. 31-42
    • Liu, Y.1    Chang, G.2    Yu, J.3
  • 35
    • 84938404815 scopus 로고    scopus 로고
    • Predicting drivers decision in dilemma zone in a driving simulator environment using canonical discriminant analysis
    • S.G. Machiani, and M. Abbas Predicting drivers decision in dilemma zone in a driving simulator environment using canonical discriminant analysis Transportation Research Board 93rd Annual Meeting 2014
    • (2014) Transportation Research Board 93rd Annual Meeting
    • Machiani, S.G.1    Abbas, M.2
  • 38
    • 0035450427 scopus 로고    scopus 로고
    • Vehicle dynamics model for predicting maximum truck acceleration levels
    • H. Rakha, I. Lucic, S.H. Demarchi, J.R. Setti, and M. Van Aerde Vehicle dynamics model for predicting maximum truck acceleration levels J. Transp. Eng. 127 2001 418 425
    • (2001) J. Transp. Eng. , vol.127 , pp. 418-425
    • Rakha, H.1    Lucic, I.2    Demarchi, S.H.3    Setti, J.R.4    Van Aerde, M.5
  • 39
    • 36849028673 scopus 로고    scopus 로고
    • Characterizing driver behavior on signalized intersection approaches at the onset of a yellow-phase trigger
    • H. Rakha, I. El-Shawarby, and J.R. Setti Characterizing driver behavior on signalized intersection approaches at the onset of a yellow-phase trigger IEEE Trans. Intell. Transp. Syst. 8 2007 630 640
    • (2007) IEEE Trans. Intell. Transp. Syst. , vol.8 , pp. 630-640
    • Rakha, H.1    El-Shawarby, I.2    Setti, J.R.3
  • 41
    • 0019527642 scopus 로고
    • A model of driver behavior at high speed signalized intersections
    • Y. Sheffi, and H. Mahmassani A model of driver behavior at high speed signalized intersections Transp. Sci. 15 1981 50 61
    • (1981) Transp. Sci. , vol.15 , pp. 50-61
    • Sheffi, Y.1    Mahmassani, H.2
  • 42
    • 1442310821 scopus 로고    scopus 로고
    • Aggressive driving: An observational study of driver, vehicle, and situational variables
    • D. Shinar, and R. Compton Aggressive driving: an observational study of driver, vehicle, and situational variables Accid. Anal. Prev. 36 2004 429 437
    • (2004) Accid. Anal. Prev. , vol.36 , pp. 429-437
    • Shinar, D.1    Compton, R.2
  • 44
    • 84878712470 scopus 로고    scopus 로고
    • Real-time detection system of driver distraction using machine learning
    • F. Tango, and M. Botta Real-time detection system of driver distraction using machine learning IEEE Trans. Intell. Transp. Syst. 14 2013 894 905
    • (2013) IEEE Trans. Intell. Transp. Syst. , vol.14 , pp. 894-905
    • Tango, F.1    Botta, M.2
  • 46
    • 84863258047 scopus 로고    scopus 로고
    • Quantifying dynamic factors contributing to dilemma zone at high-speed signalized intersections
    • H. Wei, Z. Li, P. Yi, and K.R. Duemmel Quantifying dynamic factors contributing to dilemma zone at high-speed signalized intersections Transp. Res. Rec.: J. Transp. Res. Board 2259 2011 202 212
    • (2011) Transp. Res. Rec.: J. Transp. Res. Board , vol.2259 , pp. 202-212
    • Wei, H.1    Li, Z.2    Yi, P.3    Duemmel, K.R.4
  • 48
    • 34249865344 scopus 로고    scopus 로고
    • Real-time detection of driver cognitive distraction using support vector machines
    • L. Yulan, M.L. Reyes, and J.D. Lee Real-time detection of driver cognitive distraction using support vector machines IEEE Trans. Intell. Transp. Syst. 8 2007 340 350
    • (2007) IEEE Trans. Intell. Transp. Syst. , vol.8 , pp. 340-350
    • Yulan, L.1    Reyes, M.L.2    Lee, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.