-
1
-
-
34248581989
-
Disordered lipid metabolism and the pathogenesis of insulin resistance
-
Savage D.B., et al. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 2007, 87:507-520.
-
(2007)
Physiol. Rev.
, vol.87
, pp. 507-520
-
-
Savage, D.B.1
-
2
-
-
0030844895
-
Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes
-
Till M., et al. Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes. Am. J. Cardiol. 1997, 80:85A-89A.
-
(1997)
Am. J. Cardiol.
, vol.80
, pp. 85A-89A
-
-
Till, M.1
-
3
-
-
2542475127
-
Glucose transport in the heart
-
Abel E.D. Glucose transport in the heart. Front. Biosci. 2004, 9:201-215.
-
(2004)
Front. Biosci.
, vol.9
, pp. 201-215
-
-
Abel, E.D.1
-
4
-
-
0030771168
-
Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes
-
Zorzano A., et al. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am. J. Cardiol. 1997, 80:65A-76A.
-
(1997)
Am. J. Cardiol.
, vol.80
, pp. 65A-76A
-
-
Zorzano, A.1
-
5
-
-
79551644805
-
GLUT4 associated proteins as therapeutic targets for diabetes
-
Morgan B.J., et al. GLUT4 associated proteins as therapeutic targets for diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov. 2011, 5:25-32.
-
(2011)
Recent Pat. Endocr. Metab. Immune Drug Discov.
, vol.5
, pp. 25-32
-
-
Morgan, B.J.1
-
6
-
-
0037677773
-
Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling
-
Luiken J.J., et al. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 2003, 52:1627-1634.
-
(2003)
Diabetes
, vol.52
, pp. 1627-1634
-
-
Luiken, J.J.1
-
7
-
-
0029064123
-
Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin
-
Lund S., et al. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:5817-5821.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 5817-5821
-
-
Lund, S.1
-
8
-
-
36849061190
-
Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders
-
Viollet B., et al. Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metab. 2007, 33:395-402.
-
(2007)
Diabetes Metab.
, vol.33
, pp. 395-402
-
-
Viollet, B.1
-
9
-
-
0032765396
-
5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle
-
Kurth-Kraczek E.J., et al. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999, 48:1667-1671.
-
(1999)
Diabetes
, vol.48
, pp. 1667-1671
-
-
Kurth-Kraczek, E.J.1
-
10
-
-
79951772967
-
Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism
-
Hardie D.G. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc. Nutr. Soc. 2011, 70:92-99.
-
(2011)
Proc. Nutr. Soc.
, vol.70
, pp. 92-99
-
-
Hardie, D.G.1
-
11
-
-
84880949120
-
Exercise, GLUT4, and skeletal muscle glucose uptake
-
Richter E.A., et al. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93:993-1017.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 993-1017
-
-
Richter, E.A.1
-
12
-
-
0345832116
-
Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle
-
Jorgensen S.B., et al. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 2004, 279:1070-1079.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1070-1079
-
-
Jorgensen, S.B.1
-
13
-
-
60549115574
-
Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes
-
Habets D.D., et al. Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim. Biophys. Acta 2009, 1791:212-219.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 212-219
-
-
Habets, D.D.1
-
14
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
Sakamoto K., et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005, 24:1810-1820.
-
(2005)
EMBO J.
, vol.24
, pp. 1810-1820
-
-
Sakamoto, K.1
-
15
-
-
33646420605
-
Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1
-
Sakamoto K., et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am. J. Physiol. Endocrinol. Metab. 2006, 290:E780-E788.
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.290
, pp. E780-E788
-
-
Sakamoto, K.1
-
16
-
-
84904324146
-
Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake
-
Angin Y., et al. Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake. Am. J. Physiol. Endocrinol. Metab. 2014, 307:E225-E236.
-
(2014)
Am. J. Physiol. Endocrinol. Metab.
, vol.307
, pp. E225-E236
-
-
Angin, Y.1
-
17
-
-
33746353046
-
LKB1-dependent signaling pathways
-
Alessi D.R., et al. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 2006, 75:137-163.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 137-163
-
-
Alessi, D.R.1
-
18
-
-
36249027069
-
Co-expression of LKB1, MO25alpha and STRADalpha in bacteria yield the functional and active heterotrimeric complex
-
Neumann D., et al. Co-expression of LKB1, MO25alpha and STRADalpha in bacteria yield the functional and active heterotrimeric complex. Mol. Biotechnol. 2007, 36:220-231.
-
(2007)
Mol. Biotechnol.
, vol.36
, pp. 220-231
-
-
Neumann, D.1
-
19
-
-
84916596916
-
Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle
-
Cartee G.D. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 2015, 58:19-30.
-
(2015)
Diabetologia
, vol.58
, pp. 19-30
-
-
Cartee, G.D.1
-
20
-
-
78650897555
-
Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking
-
Chen S., et al. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab. 2011, 13:68-79.
-
(2011)
Cell Metab.
, vol.13
, pp. 68-79
-
-
Chen, S.1
-
21
-
-
33749365543
-
Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase
-
Peck G.R., et al. Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase. Mol. Endocrinol. 2006, 20:2576-2583.
-
(2006)
Mol. Endocrinol.
, vol.20
, pp. 2576-2583
-
-
Peck, G.R.1
-
22
-
-
33749395733
-
A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160
-
Ramm G., et al. A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J. Biol. Chem. 2006, 281:29174-29180.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 29174-29180
-
-
Ramm, G.1
-
23
-
-
33845998942
-
AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle
-
Kramer H.F., et al. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J. Biol. Chem. 2006, 281:31478-31485.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 31478-31485
-
-
Kramer, H.F.1
-
24
-
-
84860635058
-
Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle
-
Ducommun S., et al. Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. Am. J. Physiol. Endocrinol. Metab. 2012, 302:E1036-E1043.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.302
, pp. E1036-E1043
-
-
Ducommun, S.1
-
25
-
-
44349161745
-
Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle
-
Taylor E.B., et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J. Biol. Chem. 2008, 283:9787-9796.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9787-9796
-
-
Taylor, E.B.1
-
26
-
-
70350405265
-
Structural mechanisms for regulation of membrane traffic by rab GTPases
-
Lee M.T., et al. Structural mechanisms for regulation of membrane traffic by rab GTPases. Traffic 2009, 10:1377-1389.
-
(2009)
Traffic
, vol.10
, pp. 1377-1389
-
-
Lee, M.T.1
-
27
-
-
79952424287
-
TBC proteins: GAPs for mammalian small GTPase Rab?
-
Fukuda M. TBC proteins: GAPs for mammalian small GTPase Rab?. Biosci. Rep. 2011, 31:159-168.
-
(2011)
Biosci. Rep.
, vol.31
, pp. 159-168
-
-
Fukuda, M.1
-
28
-
-
57049184703
-
Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation
-
Ishikura S., et al. Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am. J. Physiol. Cell Physiol. 2008, 295:C1016-C1025.
-
(2008)
Am. J. Physiol. Cell Physiol.
, vol.295
, pp. C1016-C1025
-
-
Ishikura, S.1
-
29
-
-
84882762459
-
Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs
-
Sadacca L.A., et al. Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol. Biol. Cell 2013, 24:2544-2557.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 2544-2557
-
-
Sadacca, L.A.1
-
30
-
-
0024434397
-
Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport
-
Cleland P.J., et al. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J. Biol. Chem. 1989, 264:17704-17711.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 17704-17711
-
-
Cleland, P.J.1
-
31
-
-
79955061032
-
Protein kinase D signaling: multiple biological functions in health and disease
-
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011, 26:23-33.
-
(2011)
Physiology (Bethesda)
, vol.26
, pp. 23-33
-
-
Rozengurt, E.1
-
32
-
-
26944446652
-
Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex
-
Hausser A., et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 2005, 7:880-886.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 880-886
-
-
Hausser, A.1
-
33
-
-
33845953689
-
Mitochondrial ROS: radical detoxification, mediated by protein kinase D
-
Storz P. Mitochondrial ROS: radical detoxification, mediated by protein kinase D. Trends Cell Biol. 2007, 17:13-18.
-
(2007)
Trends Cell Biol.
, vol.17
, pp. 13-18
-
-
Storz, P.1
-
34
-
-
84857255334
-
Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes
-
Dirkx E., et al. Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J. Biol. Chem. 2012, 287:5871-5881.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 5871-5881
-
-
Dirkx, E.1
-
35
-
-
38349019479
-
Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake, independent of AMPK
-
Luiken J.J., et al. Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake, independent of AMPK. Cell. Signal. 2008, 20:543-556.
-
(2008)
Cell. Signal.
, vol.20
, pp. 543-556
-
-
Luiken, J.J.1
-
36
-
-
84872684367
-
Overexpression of AMP-activated protein kinase or protein kinase D prevents lipid-induced insulin resistance in cardiomyocytes
-
Steinbusch L.K., et al. Overexpression of AMP-activated protein kinase or protein kinase D prevents lipid-induced insulin resistance in cardiomyocytes. J. Mol. Cell. Cardiol. 2013, 55:165-173.
-
(2013)
J. Mol. Cell. Cardiol.
, vol.55
, pp. 165-173
-
-
Steinbusch, L.K.1
-
37
-
-
84907718094
-
Protein kinase-D1 overexpression prevents lipid-induced cardiac insulin resistance
-
Dirkx E., et al. Protein kinase-D1 overexpression prevents lipid-induced cardiac insulin resistance. J. Mol. Cell. Cardiol. 2014, 76:208-217.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.76
, pp. 208-217
-
-
Dirkx, E.1
-
38
-
-
0029100974
-
Membrane transport in the endocytic pathway
-
Gruenberg J., et al. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 1995, 7:552-563.
-
(1995)
Curr. Opin. Cell Biol.
, vol.7
, pp. 552-563
-
-
Gruenberg, J.1
-
39
-
-
84973398944
-
Detection of cardiac myosin binding protein-C (cMyBP-C) by a phospho-specific PKD antibody in contracting rat cardiomyocytes
-
Dirkx E., et al. Detection of cardiac myosin binding protein-C (cMyBP-C) by a phospho-specific PKD antibody in contracting rat cardiomyocytes. Adv. Biosci. Biotechnol. 2013, 4:1-6.
-
(2013)
Adv. Biosci. Biotechnol.
, vol.4
, pp. 1-6
-
-
Dirkx, E.1
-
40
-
-
35548946698
-
DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress
-
Eisenberg-Lerner A., et al. DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ. 2007, 14:1908-1915.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1908-1915
-
-
Eisenberg-Lerner, A.1
-
41
-
-
84859573948
-
PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk
-
Eisenberg-Lerner A., et al. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 2012, 19:788-797.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 788-797
-
-
Eisenberg-Lerner, A.1
-
42
-
-
26944443969
-
Signalling for secretion
-
Ghanekar Y., et al. Signalling for secretion. Nat. Cell Biol. 2005, 7:851-853.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 851-853
-
-
Ghanekar, Y.1
-
43
-
-
30544432540
-
Purification and functional properties of the membrane fissioning protein CtBP3/BARS
-
Valente C., et al. Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol. 2005, 404:296-316.
-
(2005)
Methods Enzymol.
, vol.404
, pp. 296-316
-
-
Valente, C.1
-
44
-
-
49649085586
-
AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase
-
Horman S., et al. AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J. Biol. Chem. 2008, 283:18505-18512.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18505-18512
-
-
Horman, S.1
-
45
-
-
84355161919
-
Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis
-
Banko M.R., et al. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 2011, 44:878-892.
-
(2011)
Mol. Cell
, vol.44
, pp. 878-892
-
-
Banko, M.R.1
-
46
-
-
84894411678
-
Alpha1 catalytic subunit of AMPK modulates contractile function of cardiomyocytes through phosphorylation of troponin I
-
Chen S., et al. Alpha1 catalytic subunit of AMPK modulates contractile function of cardiomyocytes through phosphorylation of troponin I. Life Sci. 2014, 98:75-82.
-
(2014)
Life Sci.
, vol.98
, pp. 75-82
-
-
Chen, S.1
-
47
-
-
84861740319
-
AMP-activated protein kinase phosphorylates cardiac troponin I at Ser-150 to increase myofilament calcium sensitivity and blunt PKA-dependent function
-
Nixon B.R., et al. AMP-activated protein kinase phosphorylates cardiac troponin I at Ser-150 to increase myofilament calcium sensitivity and blunt PKA-dependent function. J. Biol. Chem. 2012, 287:19136-19147.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19136-19147
-
-
Nixon, B.R.1
-
48
-
-
77949317208
-
2+ sensitivity and cross-bridge cycling
-
2+ sensitivity and cross-bridge cycling. J. Biol. Chem. 2010, 285:5674-5682.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5674-5682
-
-
Bardswell, S.C.1
-
49
-
-
9344230851
-
Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function
-
Haworth R.S., et al. Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circ. Res. 2004, 95:1091-1099.
-
(2004)
Circ. Res.
, vol.95
, pp. 1091-1099
-
-
Haworth, R.S.1
-
50
-
-
84864551089
-
2+-activated tension of cardiomyocyte contraction by phosphorylation of cMyBP-C-Ser315
-
2+-activated tension of cardiomyocyte contraction by phosphorylation of cMyBP-C-Ser315. Am. J. Physiol. Heart Circ. Physiol. 2012, 303:H323-H331.
-
(2012)
Am. J. Physiol. Heart Circ. Physiol.
, vol.303
, pp. H323-H331
-
-
Dirkx, E.1
-
51
-
-
33644634452
-
Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes
-
Gupte A., et al. Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem. Biophys. Res. Commun. 2006, 342:751-757.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.342
, pp. 751-757
-
-
Gupte, A.1
-
52
-
-
33745613778
-
Insulin receptor signals regulating GLUT4 translocation and actin dynamics
-
Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr. J. 2006, 53:267-293.
-
(2006)
Endocr. J.
, vol.53
, pp. 267-293
-
-
Kanzaki, M.1
-
53
-
-
0242268533
-
Insulin signaling in microdomains of the plasma membrane
-
Saltiel A.R., et al. Insulin signaling in microdomains of the plasma membrane. Traffic 2003, 4:711-716.
-
(2003)
Traffic
, vol.4
, pp. 711-716
-
-
Saltiel, A.R.1
-
54
-
-
8744305112
-
Analysis of insulin signalling by RNAi-based gene silencing
-
Zhou Q.L., et al. Analysis of insulin signalling by RNAi-based gene silencing. Biochem. Soc. Trans. 2004, 32:817-821.
-
(2004)
Biochem. Soc. Trans.
, vol.32
, pp. 817-821
-
-
Zhou, Q.L.1
-
55
-
-
84878242738
-
Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle
-
Sylow L., et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013, 62:1865-1875.
-
(2013)
Diabetes
, vol.62
, pp. 1865-1875
-
-
Sylow, L.1
-
56
-
-
84921882161
-
Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1
-
Sylow L., et al. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J. Physiol. 2015, 593:645-656.
-
(2015)
J. Physiol.
, vol.593
, pp. 645-656
-
-
Sylow, L.1
-
57
-
-
77953440109
-
Diabetic cardiomyopathy, causes and effects
-
Boudina S., et al. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 2010, 11:31-39.
-
(2010)
Rev. Endocr. Metab. Disord.
, vol.11
, pp. 31-39
-
-
Boudina, S.1
-
58
-
-
52649144336
-
The complexities of diabetic cardiomyopathy: lessons from patients and animal models
-
Harmancey R., et al. The complexities of diabetic cardiomyopathy: lessons from patients and animal models. Curr. Diab. Rep. 2008, 8:243-248.
-
(2008)
Curr. Diab. Rep.
, vol.8
, pp. 243-248
-
-
Harmancey, R.1
-
59
-
-
80053604536
-
High fat diet induced diabetic cardiomyopathy
-
Dirkx E., et al. High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot. Essent. Fatty Acids 2011, 85:219-225.
-
(2011)
Prostaglandins Leukot. Essent. Fatty Acids
, vol.85
, pp. 219-225
-
-
Dirkx, E.1
-
60
-
-
33646161306
-
Regulation of cardiac stress signaling by protein kinase d1
-
Harrison B.C., et al. Regulation of cardiac stress signaling by protein kinase d1. Mol. Cell. Biol. 2006, 26:3875-3888.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 3875-3888
-
-
Harrison, B.C.1
-
61
-
-
0031425839
-
AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
Merrill G.F., et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 1997, 273:E1107-E1112.
-
(1997)
Am. J. Physiol.
, vol.273
, pp. E1107-E1112
-
-
Merrill, G.F.1
-
62
-
-
72449131381
-
CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle
-
Abbott M.J., et al. CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297:R1724-R1732.
-
(2009)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.297
, pp. R1724-R1732
-
-
Abbott, M.J.1
-
63
-
-
79952264625
-
Evaluating the prediction of maximal heart rate in children and adolescents
-
Mahon A.D., et al. Evaluating the prediction of maximal heart rate in children and adolescents. Res. Q. Exerc. Sport 2010, 81:466-471.
-
(2010)
Res. Q. Exerc. Sport
, vol.81
, pp. 466-471
-
-
Mahon, A.D.1
-
64
-
-
0042466249
-
Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise
-
Coven D.L., et al. Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am. J. Physiol. Endocrinol. Metab. 2003, 285:E629-E636.
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.285
, pp. E629-E636
-
-
Coven, D.L.1
|