메뉴 건너뛰기




Volumn 152, Issue 1-2, 2015, Pages 75-112

Conditional gradient algorithms for norm-regularized smooth convex optimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; FUNCTIONS; LEARNING SYSTEMS; OPTIMIZATION; SIGNAL PROCESSING;

EID: 84937974079     PISSN: 00255610     EISSN: 14364646     Source Type: Journal    
DOI: 10.1007/s10107-014-0778-9     Document Type: Article
Times cited : (146)

References (39)
  • 1
    • 84937991610 scopus 로고    scopus 로고
    • Andersen, E.D., Andersen, K.D.: The MOSEK optimization tools manual
    • Andersen, E.D., Andersen, K.D.: The MOSEK optimization tools manual. http://www.mosek.com/fileadmin/products/6_0/tools/doc/pdf/tools.pdf
  • 2
    • 84937991611 scopus 로고    scopus 로고
    • Bach, F., Jenatton, R., Mairal, J., Obozinski, G. et al.: Convex optimization with sparsity-inducing norms. In: Sra, S., Nowozin, S., Wright, S. J. (eds). Optimization for Machine Learning, pp. 19–53. MIT Press
    • Bach, F., Jenatton, R., Mairal, J., Obozinski, G. et al.: Convex optimization with sparsity-inducing norms. In: Sra, S., Nowozin, S., Wright, S. J. (eds). Optimization for Machine Learning, pp. 19–53. MIT Press
  • 3
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai, J.-F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2008)
    • (2008) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.-F.1    Candes, E.J.2    Shen, Z.3
  • 4
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)
    • (2009) Found. Comput. Math. , vol.9 , Issue.6 , pp. 717-772
    • Candès, E.1    Recht, B.2
  • 5
    • 84921068971 scopus 로고    scopus 로고
    • Dual subgradient algorithms for large-scale nonsmooth learning problems
    • Cox, B., Juditsky, A., Nemirovski, A.: Dual subgradient algorithms for large-scale nonsmooth learning problems. Math. Program. 1–38 (2013). doi:10.1007/s10107-013-0725-1
    • (2013) Math. Program
    • Cox, B.1    Juditsky, A.2    Nemirovski, A.3
  • 7
    • 84866721491 scopus 로고    scopus 로고
    • Lifted coordinate descent for learning with trace-norm regularization
    • Dudik, M., Harchaoui, Z., Malick, J.: Lifted coordinate descent for learning with trace-norm regularization. In: AISTATS (2012)
    • (2012) AISTATS
    • Dudik, M.1    Harchaoui, Z.2    Malick, J.3
  • 8
    • 2442634523 scopus 로고
    • Conditional gradient algorithms with open loop step size rules
    • Dunn, J.C., Harshbarger, S.: Conditional gradient algorithms with open loop step size rules. J. Math. Anal. Appl. 62(2), 432–444 (1978)
    • (1978) J. Math. Anal. Appl. , vol.62 , Issue.2 , pp. 432-444
    • Dunn, J.C.1    Harshbarger, S.2
  • 9
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming
    • Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3, 95–110 (1956)
    • (1956) Naval Res. Logist. Q. , vol.3 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 11
    • 84866685025 scopus 로고    scopus 로고
    • Large-scale image classification with trace-norm regularization
    • Harchaoui, Z., Douze, M., Paulin, M., Dudik, M., Malick, J.: Large-scale image classification with trace-norm regularization. In: CVPR (2012)
    • (2012) CVPR
    • Harchaoui, Z.1    Douze, M.2    Paulin, M.3    Dudik, M.4    Malick, J.5
  • 12
    • 84937991613 scopus 로고    scopus 로고
    • Harchaoui, Z., Juditsky, A., Nemirovski, A.: Conditional gradient algorithms for machine learning. In: NIPS Workshop on Optimization for Machine Learning. (2012)
    • Harchaoui, Z., Juditsky, A., Nemirovski, A.: Conditional gradient algorithms for machine learning. In: NIPS Workshop on Optimization for Machine Learning. http://opt.kyb.tuebingen.mpg.de/opt12/papers.html (2012)
  • 15
    • 0023404413 scopus 로고
    • Restricted simplicial decomposition: computation and extensions
    • Hearn, D., Lawphongpanich, S., Ventura, J.: Restricted simplicial decomposition: computation and extensions. Math. Program. Stud. 31, 99–118 (1987)
    • (1987) Math. Program. Stud. , vol.31 , pp. 99-118
    • Hearn, D.1    Lawphongpanich, S.2    Ventura, J.3
  • 16
    • 0016025237 scopus 로고
    • An extension of the Frank-Wolfe method of feasible directions
    • Holloway, C.: An extension of the Frank-Wolfe method of feasible directions. Math. Program. 6, 14–27 (1974)
    • (1974) Math. Program. , vol.6 , pp. 14-27
    • Holloway, C.1
  • 17
    • 84897524603 scopus 로고    scopus 로고
    • Revisiting Frank-Wolfe: projection-free sparse convex optimization
    • Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: ICML (2013)
    • (2013) ICML
    • Jaggi, M.1
  • 18
    • 77956535889 scopus 로고    scopus 로고
    • A simple algorithm for nuclear norm regularized problems
    • Jaggi, M., Sulovsky, M.: A simple algorithm for nuclear norm regularized problems. In: ICML (2010)
    • (2010) ICML
    • Jaggi, M.1    Sulovsky, M.2
  • 19
    • 84875956767 scopus 로고    scopus 로고
    • Randomized first order algorithms with applications to (Formula Presented.)-minimization
    • Juditsky, A., Karzan, F.K., Nemirovski, A.: Randomized first order algorithms with applications to (Formula Presented.)-minimization. Math. Program. 142(1–2), 269–310 (2013)
    • (2013) Math. Program. , vol.142 , Issue.1-2 , pp. 269-310
    • Juditsky, A.1    Karzan, F.K.2    Nemirovski, A.3
  • 20
    • 84865676844 scopus 로고    scopus 로고
    • First order methods for nonsmooth large-scale convex minimization, i: general purpose methods; ii: utilizing problem’s structure
    • The MIT Press, Cambridge
    • Juditsky, A., Nemirovski, A.: First order methods for nonsmooth large-scale convex minimization, i: general purpose methods; ii: utilizing problem’s structure. In: Sra, S., Nowozin, S., Wright, S. (eds). Optimization for Machine Learning, pp. 121–184. The MIT Press, Cambridge (2012)
    • (2012) Optimization for Machine Learning , pp. 121-184
    • Juditsky, A.1    Nemirovski, A.2    Sra, S.3    Nowozin, S.4    Wright, S.5
  • 21
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133(1–2), 365–397 (2012)
    • (2012) Math. Program. , vol.133 , Issue.1-2 , pp. 365-397
    • Lan, G.1
  • 23
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and bregman iterative methods for matrix rank minimization
    • Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128, 321–353 (2011)
    • (2011) Math. Program. , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 24
    • 77949419082 scopus 로고    scopus 로고
    • Accuracy certificates for computational problems with convex structure
    • Nemirovski, A., Onn, S., Rothblum, U.G.: Accuracy certificates for computational problems with convex structure. Math. Oper. Res. 35(1), 52–78 (2010)
    • (2010) Math. Oper. Res. , vol.35 , Issue.1 , pp. 52-78
    • Nemirovski, A.1    Onn, S.2    Rothblum, U.G.3
  • 27
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)
    • (2013) Math. Program. , vol.140 , Issue.1 , pp. 125-161
    • Nesterov, Y.1
  • 28
    • 84875927700 scopus 로고    scopus 로고
    • On first-order algorithms for l 1/nuclear norm minimization
    • Nesterov, Y., Nemirovski, A.: On first-order algorithms for l 1/nuclear norm minimization. Acta Numer. 22, 509–575 (2013)
    • (2013) Acta Numer. , vol.22 , pp. 509-575
    • Nesterov, Y.1    Nemirovski, A.2
  • 29
    • 0003889402 scopus 로고
    • Numerical Methods in Extremal Problems. Mir
    • Pshenichnyj, B., Danilin, Y.: Numerical Methods in Extremal Problems. Mir, Moscow (1978)
    • (1978) Moscow
    • Pshenichnyj, B.1    Danilin, Y.2
  • 30
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
    • (2010) SIAM Rev. , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 31
    • 84880089568 scopus 로고    scopus 로고
    • Parallel stochastic gradient algorithms for large-scale matrix completion
    • Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix completion. Math. Program. Comput. 5(2), 201–226 (2013)
    • (2013) Math. Program. Comput. , vol.5 , Issue.2 , pp. 201-226
    • Recht, B.1    Ré, C.2
  • 32
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60 (1992)
    • (1992) Phys. D , pp. 60
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 33
    • 80053458764 scopus 로고    scopus 로고
    • Large-scale convex minimization with a low-rank constraint
    • Shalev-Shwartz, S., Gonen, A., Shamir, O.: Large-scale convex minimization with a low-rank constraint. In: ICML (2011)
    • (2011) ICML
    • Shalev-Shwartz, S.1    Gonen, A.2    Shamir, O.3
  • 35
    • 84860615405 scopus 로고    scopus 로고
    • Rank, trace-norm and max-norm
    • Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: COLT (2005)
    • (2005) COLT
    • Srebro, N.1    Shraibman, A.2
  • 36
    • 0027554515 scopus 로고
    • Restricted simplicial decomposition for convex constrained problems
    • Ventura, J.A., Hearn, D.W.: Restricted simplicial decomposition for convex constrained problems. Math. Program. 59, 71–85 (1993)
    • (1993) Math. Program. , vol.59 , pp. 71-85
    • Ventura, J.A.1    Hearn, D.W.2
  • 37
    • 84871450765 scopus 로고    scopus 로고
    • Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization
    • Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)
    • (2013) Math. Comput. , vol.82 , Issue.281 , pp. 301-329
    • Yang, J.1    Yuan, X.2
  • 38
    • 84877780790 scopus 로고    scopus 로고
    • Accelerated training for matrix-norm regularization: a boosting approach
    • Zhang, X., Yu, Y., Schuurmans, D.: Accelerated training for matrix-norm regularization: a boosting approach. In: NIPS, pp. 2915–2923 (2012)
    • (2012) NIPS , pp. 2915-2923
    • Zhang, X.1    Yu, Y.2    Schuurmans, D.3
  • 39
    • 48149093612 scopus 로고    scopus 로고
    • Sequential subspace optimization method for large-scale unconstrained problems
    • Faculty of Electrical engineering, Technion
    • Zibulevski, M., Narkiss, G.: Sequential subspace optimization method for large-scale unconstrained problems. Technical Report CCIT No 559, Faculty of Electrical engineering, Technion (2005)
    • (2005) Technical Report CCIT , vol.559
    • Zibulevski, M.1    Narkiss, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.