메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 3491-3499

Fast multivariate spatio-temporal analysis via low rank tensor learning

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; OPTIMIZATION; TENSORS;

EID: 84937954709     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (176)

References (28)
  • 1
    • 0001497505 scopus 로고
    • Estimating linear restrictions on regression coefficients for multivariate normal distributions
    • T. Anderson. Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, pages 327-351, 1951.
    • (1951) The Annals of Mathematical Statistics , pp. 327-351
    • Anderson, T.1
  • 2
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, 2(1): 53-58, 1989.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 5
    • 52749083523 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • E. Bonilla, K. Chai, and C. Williams. Multi-task Gaussian Process Prediction. In NIPS, 2007.
    • (2007) NIPS
    • Bonilla, E.1    Chai, K.2    Williams, C.3
  • 7
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatio-temporal stationary covariance functions
    • N. Cressie and H. Huang. Classes of nonseparable, spatio-temporal stationary covariance functions. JASA, 1999.
    • (1999) JASA
    • Cressie, N.1    Huang, H.2
  • 8
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • N. Cressie and G. Johannesson. Fixed rank kriging for very large spatial data sets. JRSS B (Statistical Methodology), 70(1): 209-226, 2008.
    • (2008) JRSS B (Statistical Methodology) , vol.70 , Issue.1 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 11
    • 0002211517 scopus 로고
    • A dual algorithm for the solution of nonlinear variational problems via finite element approximation
    • D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications, 2(1): 17-40, 1976.
    • (1976) Computers & Mathematics with Applications , vol.2 , Issue.1 , pp. 17-40
    • Gabay, D.1    Mercier, B.2
  • 12
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 2011.
    • (2011) Inverse Problems
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 16
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. Kolda and B. Bader. Tensor decompositions and applications. SIAM review, 2009.
    • (2009) SIAM Review
    • Kolda, T.1    Bader, B.2
  • 17
    • 78751683781 scopus 로고    scopus 로고
    • Relation regularized matrix factorization
    • W.-J. Li and D.-Y. Yeung. Relation regularized matrix factorization. In IJCAI, 2009.
    • (2009) IJCAI
    • Li, W.-J.1    Yeung, D.-Y.2
  • 18
    • 84879484848 scopus 로고    scopus 로고
    • Exploring trajectory-driven local geographic topics in foursquare
    • X. Long, L. Jin, and J. Joshi. Exploring trajectory-driven local geographic topics in foursquare. In UbiComp, 2012.
    • (2012) UbiComp
    • Long, X.1    Jin, L.2    Joshi, J.3
  • 20
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2,1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. H. Ding. Efficient and robust feature selection via joint l2,1-norms minimization. In NIPS, 2010.
    • (2010) NIPS
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.H.4
  • 22
    • 80053458764 scopus 로고    scopus 로고
    • Large-scale convex minimization with a low-rank constraint
    • S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-rank constraint. In ICML, 2011.
    • (2011) ICML
    • Shalev-Shwartz, S.1    Gonen, A.2    Shamir, O.3
  • 23
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints. SIAM Journal on Optimization, 2010.
    • (2010) SIAM Journal on Optimization
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 24
    • 84899031700 scopus 로고    scopus 로고
    • Convex tensor decomposition via structured schatten norm regularization
    • R. Tomioka, K. Hayashi, and H. Kashima. Convex Tensor Decomposition via Structured Schatten Norm Regularization. NIPS, 2013.
    • (2013) NIPS
    • Tomioka, R.1    Hayashi, K.2    Kashima, H.3
  • 25
    • 79959549699 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for learning sparse representations
    • T. Zhang. Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations. IEEE Trans Inf Theory, pages 4689-4708, 2011.
    • (2011) IEEE Trans Inf Theory , pp. 4689-4708
    • Zhang, T.1
  • 27
    • 84890104000 scopus 로고    scopus 로고
    • Tensor regression with applications in neuroimaging data analysis
    • H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging data analysis. JASA, 2013.
    • (2013) JASA
    • Zhou, H.1    Li, L.2    Zhu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.