-
1
-
-
84937835889
-
On learning with label proportions
-
F. X. Yu, S. Kumar, T. Jebara, and S. F. Chang. On learning with label proportions. CoRR, abs/1402.5902, 2014.
-
(2014)
CoRR, Abs/1402.5902
-
-
Yu, F.X.1
Kumar, S.2
Jebara, T.3
Chang, S.F.4
-
3
-
-
84859912771
-
Generalized expectation criteria for semi-supervised learning of conditional random fields
-
G. S. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning of conditional random fields. In 46th ACL, 2008.
-
(2008)
46th ACL
-
-
Mann, G.S.1
McCallum, A.2
-
4
-
-
79955814763
-
Expectation maximization and posterior constraints
-
J. Graça, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints. In NIPS∗20, pages 569-576, 2007.
-
(2007)
NIPS∗20
, pp. 569-576
-
-
Graça, J.1
Ganchev, K.2
Taskar, B.3
-
5
-
-
71149098112
-
Learning from measurements in exponential families
-
P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. In 26th ICML, pages 641-648, 2009.
-
(2009)
26th ICML
, pp. 641-648
-
-
Liang, P.1
Jordan, M.I.2
Klein, D.3
-
6
-
-
49749111096
-
Supervised learning by training on aggregate outputs
-
D. J. Musicant, J. M. Christensen, and J. F. Olson. Supervised learning by training on aggregate outputs. In 7th ICDM, pages 252-261, 2007.
-
(2007)
7th ICDM
, pp. 252-261
-
-
Musicant, D.J.1
Christensen, J.M.2
Olson, J.F.3
-
7
-
-
84881049252
-
Learning Bayesian network classifiers from label proportions
-
J. Hernández-González, I. Inza, and J. A. Lozano. Learning bayesian network classifiers from label proportions. Pattern Recognition, 46(12):3425-3440, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.12
, pp. 3425-3440
-
-
Hernández-González, J.1
Inza, I.2
Lozano, J.A.3
-
8
-
-
80052422559
-
Learning from label proportions by optimizing cluster model selection
-
M. Stolpe and K. Morik. Learning from label proportions by optimizing cluster model selection. In 15th ECMLPKDD, pages 349-364, 2011.
-
(2011)
15th ECMLPKDD
, pp. 349-364
-
-
Stolpe, M.1
Morik, K.2
-
9
-
-
33749643147
-
Learning from aggregate views
-
B. C. Chen, L. Chen, R. Ramakrishnan, and D. R. Musicant. Learning from aggregate views. In 22th ICDE, pages 3-3, 2006.
-
(2006)
22th ICDE
, pp. 3-3
-
-
Chen, B.C.1
Chen, L.2
Ramakrishnan, R.3
Musicant, D.R.4
-
10
-
-
84857843396
-
Using published medical results and non-homogenous data in rule learning
-
J. Wojtusiak, K. Irvin, A. Birerdinc, and A. V. Baranova. Using published medical results and non-homogenous data in rule learning. In 10th ICMLA, pages 84-89, 2011.
-
(2011)
10th ICMLA
, pp. 84-89
-
-
Wojtusiak, J.1
Irvin, K.2
Birerdinc, A.3
Baranova, A.V.4
-
11
-
-
77956524666
-
SVM classifier estimation from group probabilities
-
S. Rüping. Svm classifier estimation from group probabilities. In 27th ICML, pages 911-918, 2010.
-
(2010)
27th ICML
, pp. 911-918
-
-
Rüping, S.1
-
12
-
-
34547971087
-
Learning about individuals from group statistics
-
H. Kueck and N. de Freitas. Learning about individuals from group statistics. In 21th UAI, pages 332-339, 2005.
-
(2005)
21th UAI
, pp. 332-339
-
-
Kueck, H.1
De Freitas, N.2
-
13
-
-
77951175445
-
Kernel k-means based framework for aggregate outputs classification
-
S. Chen, B. Liu, M. Qian, and C. Zhang. Kernel k-means based framework for aggregate outputs classification. In 9th ICDMW, pages 356-361, 2009.
-
(2009)
9th ICDMW
, pp. 356-361
-
-
Chen, S.1
Liu, B.2
Qian, M.3
Zhang, C.4
-
14
-
-
84911413388
-
Video event detection by inferring temporal instance labels
-
K. T. Lai, F. X. Yu, M. S. Chen, and S. F. Chang. Video event detection by inferring temporal instance labels. In 11th CVPR, 2014.
-
(2014)
11th CVPR
-
-
Lai, K.T.1
Yu, F.X.2
Chen, M.S.3
Chang, S.F.4
-
15
-
-
84901059764
-
Learning a generative classifier from label proportions
-
K. Fan, H. Zhang, S. Yan, L. Wang, W. Zhang, and J. Feng. Learning a generative classifier from label proportions. Neurocomputing, 139:47-55, 2014.
-
(2014)
Neurocomputing
, vol.139
, pp. 47-55
-
-
Fan, K.1
Zhang, H.2
Yan, S.3
Wang, L.4
Zhang, W.5
Feng, J.6
-
16
-
-
84911379270
-
∞SVM for learning with label proportions
-
F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S. F. Chang. ∞SVM for Learning with Label Proportions. In 30th ICML, pages 504-512, 2013.
-
(2013)
30th ICML
, pp. 504-512
-
-
Yu, F.X.1
Liu, D.2
Kumar, S.3
Jebara, T.4
Chang, S.F.5
-
17
-
-
70450242766
-
Estimating labels from label proportions
-
N. Quadrianto, A. J. Smola, T. S. Caetano, and Q. V. Le. Estimating labels from label proportions. JMLR, 10:2349-2374, 2009.
-
(2009)
JMLR
, vol.10
, pp. 2349-2374
-
-
Quadrianto, N.1
Smola, A.J.2
Caetano, T.S.3
Le, Q.V.4
-
18
-
-
70349847835
-
Bregman divergences and surrogates for learning
-
R. Nock and F. Nielsen. Bregman divergences and surrogates for learning. IEEE Trans. PAMI, 31:2048-2059, 2009.
-
(2009)
IEEE Trans. PAMI
, vol.31
, pp. 2048-2059
-
-
Nock, R.1
Nielsen, F.2
-
20
-
-
0029700730
-
On the boosting ability of top-down decision tree learning algorithms
-
M. J. Kearns and Y. Mansour. On the boosting ability of top-down decision tree learning algorithms. In 28th ACM STOC, pages 459-468, 1996.
-
(1996)
28th ACM STOC
, pp. 459-468
-
-
Kearns, M.J.1
Mansour, Y.2
-
21
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006.
-
(2006)
JMLR
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
22
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. PAMI, 22:888-905, 2000.
-
(2000)
IEEE Trans. PAMI
, vol.22
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
23
-
-
33746060884
-
Unifying divergence minimization and statistical inference via convex duality
-
Y. Altun and A. J. Smola. Unifying divergence minimization and statistical inference via convex duality. In 19th COLT, pages 139-153, 2006.
-
(2006)
19th COLT
, pp. 139-153
-
-
Altun, Y.1
Smola, A.J.2
-
24
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
-
(2002)
JMLR
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
25
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. of Stat., 30:1-50, 2002.
-
(2002)
Ann. of Stat.
, vol.30
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
27
-
-
31844436676
-
Error limiting reductions between classification tasks
-
A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny. Error limiting reductions between classification tasks. In 22th ICML, pages 49-56, 2005.
-
(2005)
22th ICML
, pp. 49-56
-
-
Beygelzimer, A.1
Dani, V.2
Hayes, T.3
Langford, J.4
Zadrozny, B.5
|