메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 190-198

(Almost) no label no cry

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; DATA HANDLING; DATA PRIVACY; INFORMATION SCIENCE; ITERATIVE METHODS;

EID: 84937893650     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (120)

References (27)
  • 3
    • 84859912771 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning of conditional random fields
    • G. S. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning of conditional random fields. In 46th ACL, 2008.
    • (2008) 46th ACL
    • Mann, G.S.1    McCallum, A.2
  • 4
    • 79955814763 scopus 로고    scopus 로고
    • Expectation maximization and posterior constraints
    • J. Graça, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints. In NIPS20, pages 569-576, 2007.
    • (2007) NIPS20 , pp. 569-576
    • Graça, J.1    Ganchev, K.2    Taskar, B.3
  • 5
    • 71149098112 scopus 로고    scopus 로고
    • Learning from measurements in exponential families
    • P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. In 26th ICML, pages 641-648, 2009.
    • (2009) 26th ICML , pp. 641-648
    • Liang, P.1    Jordan, M.I.2    Klein, D.3
  • 6
    • 49749111096 scopus 로고    scopus 로고
    • Supervised learning by training on aggregate outputs
    • D. J. Musicant, J. M. Christensen, and J. F. Olson. Supervised learning by training on aggregate outputs. In 7th ICDM, pages 252-261, 2007.
    • (2007) 7th ICDM , pp. 252-261
    • Musicant, D.J.1    Christensen, J.M.2    Olson, J.F.3
  • 7
    • 84881049252 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers from label proportions
    • J. Hernández-González, I. Inza, and J. A. Lozano. Learning bayesian network classifiers from label proportions. Pattern Recognition, 46(12):3425-3440, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.12 , pp. 3425-3440
    • Hernández-González, J.1    Inza, I.2    Lozano, J.A.3
  • 8
    • 80052422559 scopus 로고    scopus 로고
    • Learning from label proportions by optimizing cluster model selection
    • M. Stolpe and K. Morik. Learning from label proportions by optimizing cluster model selection. In 15th ECMLPKDD, pages 349-364, 2011.
    • (2011) 15th ECMLPKDD , pp. 349-364
    • Stolpe, M.1    Morik, K.2
  • 10
    • 84857843396 scopus 로고    scopus 로고
    • Using published medical results and non-homogenous data in rule learning
    • J. Wojtusiak, K. Irvin, A. Birerdinc, and A. V. Baranova. Using published medical results and non-homogenous data in rule learning. In 10th ICMLA, pages 84-89, 2011.
    • (2011) 10th ICMLA , pp. 84-89
    • Wojtusiak, J.1    Irvin, K.2    Birerdinc, A.3    Baranova, A.V.4
  • 11
    • 77956524666 scopus 로고    scopus 로고
    • SVM classifier estimation from group probabilities
    • S. Rüping. Svm classifier estimation from group probabilities. In 27th ICML, pages 911-918, 2010.
    • (2010) 27th ICML , pp. 911-918
    • Rüping, S.1
  • 12
    • 34547971087 scopus 로고    scopus 로고
    • Learning about individuals from group statistics
    • H. Kueck and N. de Freitas. Learning about individuals from group statistics. In 21th UAI, pages 332-339, 2005.
    • (2005) 21th UAI , pp. 332-339
    • Kueck, H.1    De Freitas, N.2
  • 13
    • 77951175445 scopus 로고    scopus 로고
    • Kernel k-means based framework for aggregate outputs classification
    • S. Chen, B. Liu, M. Qian, and C. Zhang. Kernel k-means based framework for aggregate outputs classification. In 9th ICDMW, pages 356-361, 2009.
    • (2009) 9th ICDMW , pp. 356-361
    • Chen, S.1    Liu, B.2    Qian, M.3    Zhang, C.4
  • 14
    • 84911413388 scopus 로고    scopus 로고
    • Video event detection by inferring temporal instance labels
    • K. T. Lai, F. X. Yu, M. S. Chen, and S. F. Chang. Video event detection by inferring temporal instance labels. In 11th CVPR, 2014.
    • (2014) 11th CVPR
    • Lai, K.T.1    Yu, F.X.2    Chen, M.S.3    Chang, S.F.4
  • 15
    • 84901059764 scopus 로고    scopus 로고
    • Learning a generative classifier from label proportions
    • K. Fan, H. Zhang, S. Yan, L. Wang, W. Zhang, and J. Feng. Learning a generative classifier from label proportions. Neurocomputing, 139:47-55, 2014.
    • (2014) Neurocomputing , vol.139 , pp. 47-55
    • Fan, K.1    Zhang, H.2    Yan, S.3    Wang, L.4    Zhang, W.5    Feng, J.6
  • 16
  • 17
    • 70450242766 scopus 로고    scopus 로고
    • Estimating labels from label proportions
    • N. Quadrianto, A. J. Smola, T. S. Caetano, and Q. V. Le. Estimating labels from label proportions. JMLR, 10:2349-2374, 2009.
    • (2009) JMLR , vol.10 , pp. 2349-2374
    • Quadrianto, N.1    Smola, A.J.2    Caetano, T.S.3    Le, Q.V.4
  • 18
    • 70349847835 scopus 로고    scopus 로고
    • Bregman divergences and surrogates for learning
    • R. Nock and F. Nielsen. Bregman divergences and surrogates for learning. IEEE Trans. PAMI, 31:2048-2059, 2009.
    • (2009) IEEE Trans. PAMI , vol.31 , pp. 2048-2059
    • Nock, R.1    Nielsen, F.2
  • 20
    • 0029700730 scopus 로고    scopus 로고
    • On the boosting ability of top-down decision tree learning algorithms
    • M. J. Kearns and Y. Mansour. On the boosting ability of top-down decision tree learning algorithms. In 28th ACM STOC, pages 459-468, 1996.
    • (1996) 28th ACM STOC , pp. 459-468
    • Kearns, M.J.1    Mansour, Y.2
  • 21
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006.
    • (2006) JMLR , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 22
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. PAMI, 22:888-905, 2000.
    • (2000) IEEE Trans. PAMI , vol.22 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 23
    • 33746060884 scopus 로고    scopus 로고
    • Unifying divergence minimization and statistical inference via convex duality
    • Y. Altun and A. J. Smola. Unifying divergence minimization and statistical inference via convex duality. In 19th COLT, pages 139-153, 2006.
    • (2006) 19th COLT , pp. 139-153
    • Altun, Y.1    Smola, A.J.2
  • 24
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
    • (2002) JMLR , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 25
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. of Stat., 30:1-50, 2002.
    • (2002) Ann. of Stat. , vol.30 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.