메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 559-567

Coresets for k-segmentation of streaming data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL GEOMETRY; FINANCIAL DATA PROCESSING; INFORMATION SCIENCE; VIDEO STREAMING;

EID: 84937891164     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (41)

References (23)
  • 2
    • 84898832069 scopus 로고    scopus 로고
    • Active learning of an action detector from untrimmed videos
    • S. Bandla and K. Grauman. Active learning of an action detector from untrimmed videos. In ICCV, 2013.
    • (2013) ICCV
    • Bandla, S.1    Grauman, K.2
  • 4
    • 84945709924 scopus 로고
    • On the approximation of curves by line segments using dynamic programming
    • R. Bellman. On the approximation of curves by line segments using dynamic programming. Commun. ACM, 4(6):284, 1961.
    • (1961) Commun. ACM , vol.4 , Issue.6 , pp. 284
    • Bellman, R.1
  • 5
    • 84871233078 scopus 로고    scopus 로고
    • Continually improving large scale long term visual navigation of a vehicle in dynamic urban environments
    • Anchorage, USA, September
    • W. Churchill and P. Newman. Continually improving large scale long term visual navigation of a vehicle in dynamic urban environments. In Proc. IEEE Intelligent Transportation Systems Conference (ITSC), Anchorage, USA, September 2012.
    • (2012) Proc. IEEE Intelligent Transportation Systems Conference (ITSC)
    • Churchill, W.1    Newman, P.2
  • 9
    • 84937823852 scopus 로고    scopus 로고
    • A unified framework for approximating and clustering data
    • Manuscript available at arXiv.org
    • D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In STOC, 2010. Manuscript available at arXiv.org.
    • (2010) STOC
    • Feldman, D.1    Langberg, M.2
  • 10
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering
    • D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. SODA, 2013.
    • (2013) SODA
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 11
    • 84860505035 scopus 로고    scopus 로고
    • An effective coreset compression algorithm for large scale sensor networks
    • D. Feldman, A. Sugaya, and D. Rus. An effective coreset compression algorithm for large scale sensor networks. In IPSN, pages 257-268, 2012.
    • (2012) IPSN , pp. 257-268
    • Feldman, D.1    Sugaya, A.2    Rus, D.3
  • 14
    • 84864473304 scopus 로고    scopus 로고
    • Efficient on-line data summarization using extremum summaries
    • IEEE
    • Y. Girdhar and G. Dudek. Efficient on-line data summarization using extremum summaries. In ICRA, pages 3490-3496. IEEE, 2012.
    • (2012) ICRA , pp. 3490-3496
    • Girdhar, Y.1    Dudek, G.2
  • 15
    • 33745187544 scopus 로고    scopus 로고
    • Approximation and streaming algorithms for histogram construction problems
    • S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for histogram construction problems. ACM Transactions on Database Systems (TODS), 31(1):396-438, 2006.
    • (2006) ACM Transactions on Database Systems (TODS) , vol.31 , Issue.1 , pp. 396-438
    • Guha, S.1    Koudas, N.2    Shim, K.3
  • 17
    • 77953228638 scopus 로고    scopus 로고
    • Landmark classification in large-scale image collections
    • Y. Li, D. J. Crandall, and D. P. Huttenlocher. Landmark classification in large-scale image collections. In ICCV, pages 1957-1964, 2009.
    • (2009) ICCV , pp. 1957-1964
    • Li, Y.1    Crandall, D.J.2    Huttenlocher, D.P.3
  • 18
    • 84887342438 scopus 로고    scopus 로고
    • Story-driven summarization for egocentric video
    • Z. Lu and K. Grauman. Story-driven summarization for egocentric video. In CVPR, pages 2714-2721, 2013.
    • (2013) CVPR , pp. 2714-2721
    • Lu, Z.1    Grauman, K.2
  • 19
    • 84929224383 scopus 로고    scopus 로고
    • Visual precis generation using coresets
    • IEEE Press accepted
    • R. Paul, D. Feldman, D. Rus, and P. Newman. Visual precis generation using coresets. In ICRA. IEEE Press, 2014. accepted.
    • (2014) ICRA
    • Paul, R.1    Feldman, D.2    Rus, D.3    Newman, P.4
  • 20
    • 58149415051 scopus 로고
    • An iterative procedure for the polygonal approximation of plane curves
    • U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3):244-256, 1972.
    • (1972) Computer Graphics and Image Processing , vol.1 , Issue.3 , pp. 244-256
    • Ramer, U.1
  • 21
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.1
  • 22
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • Oct.
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, Volume 2, pages 1470-1477, Oct. 2003.
    • (2003) ICCV , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 23
    • 33750913666 scopus 로고    scopus 로고
    • On-line data reduction and the quality of history in moving objects databases
    • G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro. On-line data reduction and the quality of history in moving objects databases. In MobiDE, pages 19-26, 2006.
    • (2006) MobiDE , pp. 19-26
    • Trajcevski, G.1    Cao, H.2    Scheuermann, P.3    Wolfson, O.4    Vaccaro, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.