메뉴 건너뛰기




Volumn 26, Issue 4, 2015, Pages 703-716

A multi-performance prediction model based on ANFIS and new modified-GA for machining processes

Author keywords

Adaptive network based fuzzy inference systems (ANFIS); Machining process; Modified genetic algorithm (MGA); Population; Prediction model

Indexed keywords

ALGORITHMS; ELECTRIC DISCHARGE MACHINING; ELECTRIC DISCHARGES; FORECASTING; FUZZY LOGIC; FUZZY SYSTEMS; GENETIC ALGORITHMS; INFERENCE ENGINES; INTELLIGENT CONTROL; MACHINING; MACHINING CENTERS; MEMBERSHIP FUNCTIONS; PARAMETER ESTIMATION; SIGNAL FILTERING AND PREDICTION; SURFACE ROUGHNESS;

EID: 84937872709     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0828-9     Document Type: Article
Times cited : (33)

References (45)
  • 1
    • 84895931015 scopus 로고    scopus 로고
    • Electrical discharge machining (EDM): Practices in Malaysian industries and possible change towards green manufacturing
    • Abbas, N. M., et al. (2012). Electrical discharge machining (EDM): Practices in Malaysian industries and possible change towards green manufacturing. Procedia Engineering, 41, 1684–1688.
    • (2012) Procedia Engineering , vol.41 , pp. 1684-1688
    • Abbas, N.M.1
  • 2
    • 0032131593 scopus 로고    scopus 로고
    • Modelling and optimization of grinding processes
    • Brinksmeier, E., et al. (1998). Modelling and optimization of grinding processes. Journal of Intelligent Manufacturing, 9, 303–314.
    • (1998) Journal of Intelligent Manufacturing , vol.9 , pp. 303-314
    • Brinksmeier, E.1
  • 3
    • 58349084454 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM
    • Çaydaş, U., et al. (2009). An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Systems with Applications, 36(3), 6135–6139.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 6135-6139
    • Çaydaş, U.1
  • 4
    • 84865852072 scopus 로고    scopus 로고
    • Linguistic fuzzy model identification based on PSO with different length of particles
    • Chen, D., et al. (2012). Linguistic fuzzy model identification based on PSO with different length of particles. Applied Soft Computing, 12(11), 3390–3400.
    • (2012) Applied Soft Computing , vol.12 , Issue.11 , pp. 3390-3400
    • Chen, D.1
  • 5
    • 80052115365 scopus 로고    scopus 로고
    • Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach
    • Chen, H. C., et al. (2010). Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Systems with Applications, 37(10), 7147–7153.
    • (2010) Expert Systems with Applications , vol.37 , Issue.10 , pp. 7147-7153
    • Chen, H.C.1
  • 6
    • 0025491875 scopus 로고
    • Use of neural networks for the design of manufacturing systems
    • Chryssolouris, G., Lee, M., Pierce, J., & Domroese, M. (1990). Use of neural networks for the design of manufacturing systems. Manufacturing Review, 3(3), 187–194.
    • (1990) Manufacturing Review , vol.3 , Issue.3 , pp. 187-194
    • Chryssolouris, G.1    Lee, M.2    Pierce, J.3    Domroese, M.4
  • 10
    • 78549278718 scopus 로고    scopus 로고
    • Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness
    • Dong, M., & Wang, N. (2011). Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling, 35(3), 1024–1035.
    • (2011) Applied Mathematical Modelling , vol.35 , Issue.3 , pp. 1024-1035
    • Dong, M.1    Wang, N.2
  • 11
    • 77953622067 scopus 로고    scopus 로고
    • A study on the performance of some multi-response optimisation methods for WEDM processes
    • Gauri, S. K., & Chakraborty, S. (2010). A study on the performance of some multi-response optimisation methods for WEDM processes. International Journal of Advanced Manufacturing Technology, 49(1–4), 155–166.
    • (2010) International Journal of Advanced Manufacturing Technology , vol.49 , Issue.1-4 , pp. 155-166
    • Gauri, S.K.1    Chakraborty, S.2
  • 12
    • 62549130699 scopus 로고    scopus 로고
    • Zigzag machining surface roughness modelling using evolutionary approach
    • Gologlu, C., & Arslan, Y. (2009). Zigzag machining surface roughness modelling using evolutionary approach. Journal of Intelligent Manufacturing, 20(2), 203–210.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , Issue.2 , pp. 203-210
    • Gologlu, C.1    Arslan, Y.2
  • 13
    • 3042852279 scopus 로고    scopus 로고
    • State of the art in wire electrical discharge machining (WEDM)
    • Ho, K., et al. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12–13), 1247–1259.
    • (2004) International Journal of Machine Tools and Manufacture , vol.44 , Issue.12-13 , pp. 1247-1259
    • Ho, K.1
  • 14
    • 56349089474 scopus 로고    scopus 로고
    • Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm
    • Ho, W. H., et al. (2009). Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications, 36(2), 3216–3222.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3216-3222
    • Ho, W.H.1
  • 15
    • 84890526110 scopus 로고    scopus 로고
    • Techniques and applications of neural networks for fuzzy rule approximation
    • Ishibuchi, H. (1999). Techniques and applications of neural networks for fuzzy rule approximation. Fuzzy Theory Systems: Techniques and Applications, 4, 1491–1519.
    • (1999) Fuzzy Theory Systems: Techniques and Applications , vol.4 , pp. 1491-1519
    • Ishibuchi, H.1
  • 16
  • 18
    • 84655161548 scopus 로고    scopus 로고
    • Modeling customer satisfaction for new product development using a PSO-based ANFIS approach
    • Jiang, H. M., et al. (2012). Modeling customer satisfaction for new product development using a PSO-based ANFIS approach. Applied Soft Computing, 12(2), 726–734.
    • (2012) Applied Soft Computing , vol.12 , Issue.2 , pp. 726-734
    • Jiang, H.M.1
  • 19
    • 84880318213 scopus 로고    scopus 로고
    • Application of fuzzy logic and regression analysis for modeling surface roughness in face milling
    • Kovac, P., et al. (2012). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 1–8, doi:10.1007/s10845-012-0623-z.
    • (2012) Journal of Intelligent Manufacturing
    • Kovac, P.1
  • 20
    • 57949102475 scopus 로고    scopus 로고
    • Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
    • Krishna, M.R.G., et al. (2009). Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. Journal of Material Processing Technology, 209(3), 1512–1520.
    • (2009) Journal of Material Processing Technology , vol.209 , Issue.3 , pp. 1512-1520
    • Krishna, M.R.G.1
  • 21
    • 84891489140 scopus 로고    scopus 로고
    • Multi-objective optimization of material removal rate and surface roughness in wire electrical discharge turning. International of Advanced Manufacturing Technology
    • Krishnan, S. A., & Samuel, G. L. (2012). Multi-objective optimization of material removal rate and surface roughness in wire electrical discharge turning. International of Advanced Manufacturing Technology, doi:10.1007/s00170-012-4628-8.
    • (2012) doi:10.1007/s00170-012-4628-8
    • Krishnan, S.A.1    Samuel, G.L.2
  • 23
    • 59149085859 scopus 로고    scopus 로고
    • T–S fuzzy model identification based on chaos optimization
    • Li, C. S., et al. (2008). T–S fuzzy model identification based on chaos optimization. In Proceedings of the ISNN, (pp. 786–795).
    • (2008) In Proceedings of the ISNN , pp. 786-795
    • Li, C.S.1
  • 25
    • 77957836190 scopus 로고    scopus 로고
    • Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system
    • Maji, K., et al. (2010). Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system. Expert Systems with Applications, 37, 8566–8574.
    • (2010) Expert Systems with Applications , vol.37 , pp. 8566-8574
    • Maji, K.1
  • 26
    • 43949110585 scopus 로고    scopus 로고
    • Artificial neural network models for the prediction of surface roughness in electrical discharge machining
    • Markopoulos, A. P., et al. (2008). Artificial neural network models for the prediction of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing, 19, 283–292.
    • (2008) Journal of Intelligent Manufacturing , vol.19 , pp. 283-292
    • Markopoulos, A.P.1
  • 28
    • 79955636211 scopus 로고    scopus 로고
    • Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines
    • Musharavati, F., & Hamouda, A. S. M. (2011). Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines. Expert Systems with Applications, 38, 10770–10779.
    • (2011) Expert Systems with Applications , vol.38 , pp. 10770-10779
    • Musharavati, F.1    Hamouda, A.S.M.2
  • 29
    • 33744544029 scopus 로고    scopus 로고
    • A review of optimization techniques in metal cutting processes
    • Mukherjee, I., & Ray, P. K. (2006). A review of optimization techniques in metal cutting processes. Computers Industrial Engineering, 50(1–2), 15–34.
    • (2006) Computers Industrial Engineering , vol.50 , Issue.1-2 , pp. 15-34
    • Mukherjee, I.1    Ray, P.K.2
  • 30
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P. K., et al. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1–2), 52–66.
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.K.1
  • 31
    • 3543131353 scopus 로고    scopus 로고
    • Hybrid neural network and genetic algorithm based machining feature recognition
    • Ozturk, N., & Ozturk, F. (2004). Hybrid neural network and genetic algorithm based machining feature recognition. Journal of Intelligent Manufacturing, 15(3), 287–298.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , Issue.3 , pp. 287-298
    • Ozturk, N.1    Ozturk, F.2
  • 32
    • 57949102475 scopus 로고    scopus 로고
    • Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
    • Rao, G. K. M., et al. (2009). Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. Journal of Materials Processing Technology, 209(3), 1512–1520.
    • (2009) Journal of Materials Processing Technology , vol.209 , Issue.3 , pp. 1512-1520
    • Rao, G.K.M.1
  • 35
    • 39449098498 scopus 로고    scopus 로고
    • Cutting tool wear estimation for turning
    • Sharma, V. S., et al. (2008). Cutting tool wear estimation for turning. Journal of Intelligent Manufacturing, 19(1), 99–108.
    • (2008) Journal of Intelligent Manufacturing , vol.19 , Issue.1 , pp. 99-108
    • Sharma, V.S.1
  • 36
    • 34047225473 scopus 로고    scopus 로고
    • A novel training algorithm in ANFIS structure
    • Shoorehdeli, M. A., et al. (2006). A novel training algorithm in ANFIS structure. American Control Conference, 6, 5059–5064.
    • (2006) American Control Conference , vol.6 , pp. 5059-5064
    • Shoorehdeli, M.A.1
  • 37
    • 80051915664 scopus 로고    scopus 로고
    • Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology
    • Tzeng, C. J., et al. (2011). Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(6), 841–852.
    • (2011) Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture , vol.225 , Issue.6 , pp. 841-852
    • Tzeng, C.J.1
  • 38
    • 0037566260 scopus 로고    scopus 로고
    • A hybrid intelligent method for modelling the EDM process
    • Wang, K., et al., (2003). A hybrid intelligent method for modelling the EDM process. International Journal of Machine Tools and Manufacture, 43, 995–999.
    • (2003) International Journal of Machine Tools and Manufacture , vol.43 , pp. 995-999
    • Wang, K.1
  • 39
    • 44749092776 scopus 로고    scopus 로고
    • Application of genetic algorithm based fuzzy logic control in wire transport system of wire-EDM, Journal of Materials Processing Technology
    • Yan, M. T., & Fang, C. C. (2007). Application of genetic algorithm based fuzzy logic control in wire transport system of wire-EDM. Journal of Materials Processing Technology, doi:10.1016/j.jmatprotec.
    • (2007)
    • Yan, M.T.1    Fang, C.2
  • 40
    • 84859527009 scopus 로고    scopus 로고
    • Optimization of wire electrical discharge machining process parameters for cutting tungsten
    • Yang, R. T., et al. (2011). Optimization of wire electrical discharge machining process parameters for cutting tungsten. The International Journal of Advanced Manufacturing Technology, 60(1–4), 135–147.
    • (2011) The International Journal of Advanced Manufacturing Technology , vol.60 , Issue.1-4 , pp. 135-147
    • Yang, R.T.1
  • 41
    • 84859215780 scopus 로고    scopus 로고
    • Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011)
    • Yusup, N., et al. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications, 39(10), 9909–9927.
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9909-9927
    • Yusup, N.1
  • 42
    • 77249143297 scopus 로고    scopus 로고
    • Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process
    • Zain, A. M., et al. (2010a). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Systems with Applications, 37, 4650–4659.
    • (2010) Expert Systems with Applications , vol.37 , pp. 4650-4659
    • Zain, A.M.1
  • 43
    • 71749087451 scopus 로고    scopus 로고
    • Prediction of surface roughness in the end milling machining using artificial neural network
    • Zain, A. M., et al. (2010b). Prediction of surface roughness in the end milling machining using artificial neural network. Expert Systems with Applications, 37, 1755–1768.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1755-1768
    • Zain, A.M.1
  • 44
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang, G., et al. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting. 14, 35–62.
    • (1998) International Journal of Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1
  • 45
    • 0033318858 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: A comparative case study and the Strength Pareto approach
    • Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.