-
1
-
-
84873405642
-
Sodium-ion batteries
-
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater.2013, 23, 947–958.
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
2
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries
-
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater.2012, 2, 710–721.
-
(2012)
Adv. Energy Mater
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.H.3
Ceder, G.4
Kang, K.5
-
3
-
-
84857615154
-
Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
-
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci.2012, 5, 5884–5901.
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 5884-5901
-
-
Palomares, V.1
Serras, P.2
Villaluenga, I.3
Hueso, K.B.4
Carretero-González, J.5
Rojo, T.6
-
4
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci.2013, 6, 2338–2360.
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 2338-2360
-
-
Pan, H.L.1
Hu, Y.S.2
Chen, L.Q.3
-
5
-
-
84863721145
-
Sodium and sodium-ion energy storage batteries
-
Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid. St. M.2012, 16, 168–177.
-
(2012)
Curr. Opin. Solid. St. M
, vol.16
, pp. 168-177
-
-
Ellis, B.L.1
Nazar, L.F.2
-
6
-
-
84921393776
-
Up and coming precisely engineered colloidal nanoparticles and nanocrystals for Li-ion and Na-ion batteries: Model systems or practical solutions?
-
Oszajca, M. F.; Bodnarchuk, M. I.; Kovalenko, M. V. Up and coming precisely engineered colloidal nanoparticles and nanocrystals for Li-ion and Na-ion batteries: Model systems or practical solutions? Chem. Mater.2014, 26, 5422–5432.
-
(2014)
Chem. Mater
, vol.26
, pp. 5422-5432
-
-
Oszajca, M.F.1
Bodnarchuk, M.I.2
Kovalenko, M.V.3
-
7
-
-
84903768223
-
Negative electrodes for Na-Ion batteries
-
Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-Ion batteries. Phys. Chem. Chem. Phys.2014, 16, 15007–15028.
-
(2014)
Phys. Chem. Chem. Phys
, vol.16
, pp. 15007-15028
-
-
Dahbi, M.1
Yabuuchi, N.2
Kubota, K.3
Tokiwa, K.4
Komaba, S.5
-
8
-
-
84910649638
-
High-capacity anode materials for sodium-ion batteries
-
Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J.2014, 20, 11980–11992.
-
(2014)
Chem. Eur. J
, vol.20
, pp. 11980-11992
-
-
Kim, Y.1
Ha, K.H.2
Oh, S.M.3
Lee, K.T.4
-
9
-
-
84884158265
-
Conversion reactions for sodium-ion batteries
-
Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys.2013, 15, 15876–15887.
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, pp. 15876-15887
-
-
Klein, F.1
Jache, B.2
Bhide, A.3
Adelhelm, P.4
-
10
-
-
84876527043
-
2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
-
2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun.2013, 49, 3131–3133.
-
(2013)
Chem. Commun
, vol.49
, pp. 3131-3133
-
-
Su, D.W.1
Ahn, H.J.2
Wang, G.X.3
-
11
-
-
84891672108
-
3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries
-
3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun.2014, 50, 1215–1217.
-
(2014)
Chem. Commun
, vol.50
, pp. 1215-1217
-
-
Jian, Z.L.1
Zhao, B.2
Liu, P.3
Li, F.J.4
Zheng, M.B.5
Chen, M.W.6
Shi, Y.7
Zhou, H.S.8
-
12
-
-
0036061897
-
4 spinel: First report on atransition metal oxide for the negative electrode of sodium-ion batteries
-
4 spinel: First report on atransition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater.2002, 14, 2847–2848.
-
(2002)
Chem. Mater
, vol.14
, pp. 2847-2848
-
-
Alcántara, R.1
Jaraba, M.2
Lavela, P.3
Tirado, J.L.4
-
13
-
-
84896866308
-
Transition metal oxides for high performance sodium ion battery anodes
-
Jiang, Y. Z.; Hu, M. J.; Zhang, D.; Yuan, T. Z.; Sun, W. P.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy2014, 5, 60–66.
-
(2014)
Nano Energy
, vol.5
, pp. 60-66
-
-
Jiang, Y.Z.1
Hu, M.J.2
Zhang, D.3
Yuan, T.Z.4
Sun, W.P.5
Xu, B.6
Yan, M.7
-
15
-
-
84897975349
-
Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode
-
Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater.2014, 26, 2273–2279.
-
(2014)
Adv. Mater
, vol.26
, pp. 2273-2279
-
-
Yuan, S.1
Huang, X.L.2
Ma, D.L.3
Wang, H.G.4
Meng, F.Z.5
Zhang, X.B.6
-
16
-
-
84894322643
-
Porous CuO nanowires as the anode of rechargeable Na-ion batteries
-
Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res.2014, 7, 199–208.
-
(2014)
Nano Res
, vol.7
, pp. 199-208
-
-
Wang, L.J.1
Zhang, K.2
Hu, Z.3
Duan, W.4
Cheng, F.Y.5
Chen, J.6
-
17
-
-
84898827630
-
4 microspheres as an anode material for lithium-ion and sodium-ion batteries
-
4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochim. Acta2014, 132, 193–199.
-
(2014)
Electrochim. Acta
, vol.132
, pp. 193-199
-
-
Wen, J.W.1
Zhang, D.W.2
Zang, Y.3
Sun, X.4
Cheng, B.5
Ding, C.X.6
Yu, Y.7
Chen, C.H.8
-
18
-
-
84877741619
-
2-based nanomaterials: Synthesis and application in lithium-ion batteries
-
2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small2013, 9, 1877–1893.
-
(2013)
Small
, vol.9
, pp. 1877-1893
-
-
Chen, J.S.1
Lou, X.W.2
-
19
-
-
84892479867
-
Evaluating the performance of nanostructured materials as lithium-ion battery electrodes
-
Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res.2014, 7, 1–62.
-
(2014)
Nano Res
, vol.7
-
-
Armstrong, M.J.1
O’Dwyer, C.2
Macklin, W.J.3
Holmes, J.D.4
-
20
-
-
84859560154
-
Metal oxide hollow nanostructures for lithium-ion batteries
-
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater.2012, 24, 1903–1911.
-
(2012)
Adv. Mater
, vol.24
, pp. 1903-1911
-
-
Wang, Z.Y.1
Zhou, L.2
Lou, X.W.3
-
21
-
-
84875833940
-
2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage
-
2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Nanoscale2013, 5, 1576–1582.
-
(2013)
Nanoscale
, vol.5
, pp. 1576-1582
-
-
Zhou, G.M.1
Wang, D.W.2
Li, L.3
Li, N.4
Li, F.5
Cheng, H.M.6
-
22
-
-
84906782046
-
2-carbon composite microspheres for fast and stable lithium storage performance
-
2-carbon composite microspheres for fast and stable lithium storage performance. Small2014, 10, 3240–3245.
-
(2014)
Small
, vol.10
, pp. 3240-3245
-
-
Ko, Y.N.1
Park, S.B.2
Kang, Y.C.3
-
23
-
-
84876279278
-
2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries
-
2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater.2013, 25, 2152–2157.
-
(2013)
Adv. Mater
, vol.25
, pp. 2152-2157
-
-
Zhou, X.S.1
Wan, L.J.2
Guo, Y.G.3
-
24
-
-
84872498508
-
Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries
-
Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries. Nano Res.2013, 6, 55–64.
-
(2013)
Nano Res
, vol.6
, pp. 55-64
-
-
Lu, J.1
Nan, C.Y.2
Li, L.H.3
Peng, Q.4
Li, Y.D.5
-
25
-
-
84925088771
-
2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability
-
2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res.2014, 7, 1319–1326.
-
(2014)
Nano Res
, vol.7
, pp. 1319-1326
-
-
Li, L.1
Kovalchuk, A.2
Tour, J.M.3
-
26
-
-
84865273098
-
Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries
-
Cai, J. J.; Li, Z. Z.; Shen, P. K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces2012, 4, 4093–4098.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 4093-4098
-
-
Cai, J.J.1
Li, Z.Z.2
Shen, P.K.3
-
27
-
-
84893515558
-
Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries
-
Choi, S. H.; Kang, Y. C. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small2014, 10, 474–478.
-
(2014)
Small
, vol.10
, pp. 474-478
-
-
Choi, S.H.1
Kang, Y.C.2
-
28
-
-
84862076883
-
Formation of SnS nanoflowers for lithium ion batteries
-
Vaughn II, D. D.; Hentz, O. D.; Chen, S.; Wang, D.; Schaak, R. E. Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun.2012, 48, 5608–5610.
-
(2012)
Chem. Commun
, vol.48
, pp. 5608-5610
-
-
Vaughn, D.D.1
Hentz, O.D.2
Chen, S.3
Wang, D.4
Schaak, R.E.5
-
29
-
-
84855171411
-
2 hybrids with superior rate capability for lithium ion storage
-
2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci.2012, 5, 5226–5230.
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 5226-5230
-
-
Luo, B.1
Fang, Y.2
Wang, B.3
Zhou, J.S.4
Song, H.H.5
Zhi, L.J.6
-
30
-
-
56349098700
-
2 nanoplates with extraordinary high discharge capacity for lithium ion batteries
-
2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater.2008, 20, 4269–4273.
-
(2008)
Adv. Mater
, vol.20
, pp. 4269-4273
-
-
Seo, J.-W.1
Jang, J.-T.2
Park, S.-W.3
Kim, C.4
Park, B.5
Cheon, J.6
-
31
-
-
84862277229
-
2 nanoparticles on graphene nanosheets: Synthesis, characterization, and Li-ion storage applications
-
2 nanoparticles on graphene nanosheets: Synthesis, characterization, and Li-ion storage applications. J. Phys. Chem. C2012, 116, 12475–12481.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 12475-12481
-
-
Sathish, M.1
Mitani, S.2
Tomai, T.3
Honma, I.4
-
32
-
-
84922103676
-
2 nanoparticles embedded in three dimensional graphene
-
2 nanoparticles embedded in three dimensional graphene. Nano Res.2015, 8, 184–192.
-
(2015)
Nano Res
, vol.8
, pp. 184-192
-
-
Pei, L.K.1
Jin, Q.2
Zhu, Z.Q.3
Zhao, Q.4
Liang, J.5
Chen, J.6
-
33
-
-
84878700307
-
A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries
-
Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A2013, 1, 7181–7184.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7181-7184
-
-
Wu, L.1
Hu, X.H.2
Qian, J.F.3
Pei, F.4
Wu, F.Y.5
Mao, R.J.6
Ai, X.P.7
Yang, H.X.8
Cao, Y.L.9
-
34
-
-
84906705989
-
2 to orthorhombic-SnS
-
2 to orthorhombic-SnS. ACS Nano2014, 8, 8323–8333.
-
(2014)
ACS Nano
, vol.8
, pp. 8323-8333
-
-
Zhou, T.F.1
Pang, W.K.2
Zhang, C.F.3
Yang, J.P.4
Chen, Z.X.5
Liu, H.K.6
Guo, Z.P.7
-
35
-
-
84902376682
-
2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
-
2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater.2014, 26, 3854–3859.
-
(2014)
Adv. Mater
, vol.26
, pp. 3854-3859
-
-
Qu, B.H.1
Ma, C.Z.2
Ji, G.3
Xu, C.H.4
Xu, J.5
Meng, Y.S.6
Wang, T.H.7
Lee, J.Y.8
-
36
-
-
84907808621
-
Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode
-
Dutta, P. K.; Sen, U. K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv.2014, 4, 43155–43159.
-
(2014)
RSC Adv
, vol.4
, pp. 43155-43159
-
-
Dutta, P.K.1
Sen, U.K.2
Mitra, S.3
-
37
-
-
84901028866
-
2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries
-
2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J.2014, 9, 1611–1617.
-
(2014)
Chem. Asian J
, vol.9
, pp. 1611-1617
-
-
Xie, X.Q.1
Su, D.2
Chen, S.Q.3
Zhang, J.Q.4
Dou, S.X.5
Wang, G.X.6
-
38
-
-
84900807753
-
Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes
-
Prikhodchenko, P. V.; Yu, D. Y. W.; Batabyal, S. K.; Uvarov, V.; Gun, J.; Sladkevich, S.; Mikhaylov, A. A.; Medvedev, A. G.; Lev, O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A2014, 2, 8431–8437.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8431-8437
-
-
Prikhodchenko, P.V.1
Yu, D.Y.W.2
Batabyal, S.K.3
Uvarov, V.4
Gun, J.5
Sladkevich, S.6
Mikhaylov, A.A.7
Medvedev, A.G.8
Lev, O.9
-
39
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun.2012, 48, 3321–3323.
-
(2012)
Chem. Commun
, vol.48
, pp. 3321-3323
-
-
Xiao, L.F.1
Cao, Y.L.2
Xiao, J.3
Wang, W.4
Kovarik, L.5
Nie, Z.M.6
Liu, J.7
-
40
-
-
84906818977
-
Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis
-
Choi, S. H.; Boo, S. J.; Lee, J.-H.; Kang, Y. C. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis. Sci. Rep.2014, 4, 5755.
-
(2014)
Sci. Rep
, vol.4
, pp. 5755
-
-
Choi, S.H.1
Boo, S.J.2
Lee, J.-H.3
Kang, Y.C.4
-
41
-
-
84884325395
-
Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries
-
Jang, Y. S.; Kang, Y. C. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys.2013, 15, 16437–16441.
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, pp. 16437-16441
-
-
Jang, Y.S.1
Kang, Y.C.2
-
42
-
-
84856048533
-
Synthesis and characterization of the SnS nanowires via chemical vapor deposition
-
Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Chen, Y. Z.; Peng, D. L. Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A2012, 106, 87–91.
-
(2012)
Appl. Phys. A
, vol.106
, pp. 87-91
-
-
Yue, G.H.1
Lin, Y.D.2
Wen, X.3
Wang, L.S.4
Chen, Y.Z.5
Peng, D.L.6
-
43
-
-
84870814551
-
Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance
-
Cai, W.; Hu, J.; Zhao, Y. S.; Yang, H. L.; Wang, J.; Xiang, W. D. Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol.2012, 23, 850–854.
-
(2012)
Adv. Powder Technol
, vol.23
, pp. 850-854
-
-
Cai, W.1
Hu, J.2
Zhao, Y.S.3
Yang, H.L.4
Wang, J.5
Xiang, W.D.6
-
44
-
-
84897505390
-
Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries
-
Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep.2014, 4, 4562.
-
(2014)
Sci. Rep
, vol.4
, pp. 4562
-
-
Yu, D.Y.W.1
Hoster, H.E.2
Batabyal, S.K.3
-
45
-
-
84884276382
-
2 positive electrode for reversible sodium batteries in organic electrolyte
-
2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim. Acta2013, 108, 575–582.
-
(2013)
Electrochim. Acta
, vol.108
, pp. 575-582
-
-
Ruffo, R.1
Fathi, R.2
Kim, D.J.3
Jung, Y.H.4
Mari, C.M.5
Kim, D.K.6
-
46
-
-
84887527022
-
4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries
-
4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem2013, 6, 2111–2116.
-
(2013)
ChemSusChem
, vol.6
, pp. 2111-2116
-
-
Choi, S.H.1
Kang, Y.C.2
-
47
-
-
84899439663
-
8-filled carbon nanotubes
-
8-filled carbon nanotubes. ACS Nano2014, 8, 3620–3627.
-
(2014)
ACS Nano
, vol.8
, pp. 3620-3627
-
-
Su, Q.M.1
Du, G.H.2
Zhang, J.3
Zhong, Y.J.4
Xu, B.S.5
Yang, Y.H.6
Neupane, S.7
Li, W.Z.8
-
48
-
-
84920595950
-
4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries
-
4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon2014, 79, 58–66.
-
(2014)
Carbon
, vol.79
, pp. 58-66
-
-
Choi, S.H.1
Kang, Y.C.2
|