메뉴 건너뛰기




Volumn 335, Issue 2, 2015, Pages 157-164

The presynaptic active zone: A dynamic scaffold that regulates synaptic efficacy

Author keywords

Active zone; Docking; Synaptic plasticity; Synaptic vesicle; Tethering; Ultrastructure

Indexed keywords

NEUROTRANSMITTER; PROTEOME; AGENTS INTERACTING WITH TRANSMITTER, HORMONE OR DRUG RECEPTORS; VESICULAR TRANSPORT ADAPTOR PROTEIN;

EID: 84937641590     PISSN: 00144827     EISSN: 10902422     Source Type: Journal    
DOI: 10.1016/j.yexcr.2015.02.011     Document Type: Review
Times cited : (28)

References (55)
  • 1
    • 84886998869 scopus 로고    scopus 로고
    • Neurotransmitter release: the last millisecond in the life of a synaptic vesicle
    • Südhof T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 2013, 80:675-690. 10.1016/j.neuron.2013.10.022.
    • (2013) Neuron , vol.80 , pp. 675-690
    • Südhof, T.C.1
  • 2
    • 84910000585 scopus 로고    scopus 로고
    • Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release
    • Chua J.J.E. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Cell. Mol. Life Sci. 2014, 71:3903-3916. 10.1007/s00018-014-1657-5.
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 3903-3916
    • Chua, J.J.E.1
  • 3
    • 84863826404 scopus 로고    scopus 로고
    • The presynaptic active zone
    • Südhof T.C. The presynaptic active zone. Neuron 2012, 75:11-25. 10.1016/j.neuron.2012.06.012.
    • (2012) Neuron , vol.75 , pp. 11-25
    • Südhof, T.C.1
  • 4
    • 84863471483 scopus 로고    scopus 로고
    • Molecular organization and plasticity of the cytomatrix at the active zone
    • Gundelfinger E.D., Fejtova A. Molecular organization and plasticity of the cytomatrix at the active zone. Curr. Opin. Neurobiol. 2012, 22:423-430. 10.1016/j.conb.2011.10.005.
    • (2012) Curr. Opin. Neurobiol. , vol.22 , pp. 423-430
    • Gundelfinger, E.D.1    Fejtova, A.2
  • 6
    • 84876809468 scopus 로고    scopus 로고
    • Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between Glutamatergic and GABAergic synapses
    • Boyken J., Grønborg M., Riedel D., Urlaub H., Jahn R., Chua J.J.E. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between Glutamatergic and GABAergic synapses. Neuron 2013, 78:285-297. 10.1016/j.neuron.2013.02.027.
    • (2013) Neuron , vol.78 , pp. 285-297
    • Boyken, J.1    Grønborg, M.2    Riedel, D.3    Urlaub, H.4    Jahn, R.5    Chua, J.J.E.6
  • 7
    • 58149352395 scopus 로고    scopus 로고
    • The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels
    • Morciano M., Beckhaus T., Karas M., Zimmermann H., Volknandt W. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J. Neurochem. 2009, 108:662-675. 10.1111/j.1471-4159.2008.05824.x.
    • (2009) J. Neurochem. , vol.108 , pp. 662-675
    • Morciano, M.1    Beckhaus, T.2    Karas, M.3    Zimmermann, H.4    Volknandt, W.5
  • 8
    • 84862996059 scopus 로고    scopus 로고
    • The postsynaptic organization of synapses
    • a005678
    • Sheng M., Kim E. The postsynaptic organization of synapses. Cold Spring Harb. Perspect. Biol. 2011, 3. a005678. 10.1101/cshperspect.a005678.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3
    • Sheng, M.1    Kim, E.2
  • 9
    • 84864353034 scopus 로고    scopus 로고
    • Molecular and functional heterogeneity of GABAergic synapses
    • Fritschy J.-M., Panzanelli P., Tyagarajan S.K. Molecular and functional heterogeneity of GABAergic synapses. Cell. Mol. Life Sci. 2012, 69:2485-2499. 10.1007/s00018-012-0926-4.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2485-2499
    • Fritschy, J.-M.1    Panzanelli, P.2    Tyagarajan, S.K.3
  • 10
    • 84861231844 scopus 로고    scopus 로고
    • Deep molecular diversity of mammalian synapses: why it matters and how to measure it
    • O'Rourke N.A., Weiler N.C., Micheva K.D., Smith S.J. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat. Rev. Neurosci. 2012, 13:365-379. 10.1038/nrn3170.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 365-379
    • O'Rourke, N.A.1    Weiler, N.C.2    Micheva, K.D.3    Smith, S.J.4
  • 11
    • 84896602765 scopus 로고    scopus 로고
    • Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting
    • Biesemann C., Grønborg M., Luquet E., Wichert S.P., Bernard V., Bungers S.R., et al. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J. 2014, 33:157-170. 10.1002/embj.201386120.
    • (2014) EMBO J. , vol.33 , pp. 157-170
    • Biesemann, C.1    Grønborg, M.2    Luquet, E.3    Wichert, S.P.4    Bernard, V.5    Bungers, S.R.6
  • 12
    • 84901614648 scopus 로고    scopus 로고
    • Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins
    • Wilhelm B.G., Mandad S., Truckenbrodt S., Kröhnert K., Schäfer C., Rammner B., et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 2014, 344:1023-1028. 10.1126/science.1252884.
    • (2014) Science , vol.344 , pp. 1023-1028
    • Wilhelm, B.G.1    Mandad, S.2    Truckenbrodt, S.3    Kröhnert, K.4    Schäfer, C.5    Rammner, B.6
  • 13
    • 0015401816 scopus 로고
    • The fine structure of freeze-fractured presynaptic membranes
    • Pfenninger K., Akert K., Moor H., Sandri C. The fine structure of freeze-fractured presynaptic membranes. J. Neurocytol. 1972, 1:129-149.
    • (1972) J. Neurocytol. , vol.1 , pp. 129-149
    • Pfenninger, K.1    Akert, K.2    Moor, H.3    Sandri, C.4
  • 15
    • 79961219575 scopus 로고    scopus 로고
    • Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site
    • Limbach C., Laue M.M., Wang X., Hu B., Thiede N., Hultqvist G., et al. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Proc. Natl. Acad. Sci. USA 2011, 108:E392-401. 10.1073/pnas.1101707108.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. E392-401
    • Limbach, C.1    Laue, M.M.2    Wang, X.3    Hu, B.4    Thiede, N.5    Hultqvist, G.6
  • 16
    • 78649927344 scopus 로고    scopus 로고
    • Superresolution imaging of chemical synapses in the brain
    • Dani A., Huang B., Bergan J., Dulac C., Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010, 68:843-856. 10.1016/j.neuron.2010.11.021.
    • (2010) Neuron , vol.68 , pp. 843-856
    • Dani, A.1    Huang, B.2    Bergan, J.3    Dulac, C.4    Zhuang, X.5
  • 17
    • 84884238345 scopus 로고    scopus 로고
    • The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles
    • Matkovic T., Siebert M., Knoche E., Depner H., Mertel S., Owald D., et al. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. J. Cell Biol. 2013, 202:667-683. 10.1083/jcb.201301072.
    • (2013) J. Cell Biol. , vol.202 , pp. 667-683
    • Matkovic, T.1    Siebert, M.2    Knoche, E.3    Depner, H.4    Mertel, S.5    Owald, D.6
  • 18
    • 83755169214 scopus 로고    scopus 로고
    • RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release
    • Liu K.S.Y., Siebert M., Mertel S., Knoche E., Wegener S., Wichmann C., et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 2011, 334:1565-1569. 10.1126/science.1212991.
    • (2011) Science , vol.334 , pp. 1565-1569
    • Liu, K.S.Y.1    Siebert, M.2    Mertel, S.3    Knoche, E.4    Wegener, S.5    Wichmann, C.6
  • 19
    • 67650470999 scopus 로고    scopus 로고
    • Maturation of active zone assembly by Drosophila Bruchpilot
    • Fouquet W., Owald D., Wichmann C., Mertel S., Depner H., Dyba M., et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 2009, 186:129-145. 10.1083/jcb.200812150.
    • (2009) J. Cell Biol. , vol.186 , pp. 129-145
    • Fouquet, W.1    Owald, D.2    Wichmann, C.3    Mertel, S.4    Depner, H.5    Dyba, M.6
  • 21
    • 78651509693 scopus 로고    scopus 로고
    • 2+ channels to presynaptic active zones via a direct PDZ-domain interaction
    • 2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 2011, 144:282-295. 10.1016/j.cell.2010.12.029.
    • (2011) Cell , vol.144 , pp. 282-295
    • Kaeser, P.S.1    Deng, L.2    Wang, Y.3    Dulubova, I.4    Liu, X.5    Rizo, J.6
  • 22
    • 78651481610 scopus 로고    scopus 로고
    • 2+ channel density and vesicle docking at the presynaptic active zone
    • 2+ channel density and vesicle docking at the presynaptic active zone. Neuron 2011, 69:304-316. 10.1016/j.neuron.2010.12.014.
    • (2011) Neuron , vol.69 , pp. 304-316
    • Han, Y.1    Kaeser, P.S.2    Südhof, T.C.3    Schneggenburger, R.4
  • 23
    • 79952995749 scopus 로고    scopus 로고
    • The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions
    • Stigloher C., Zhan H., Zhen M., Richmond J., Bessereau J.L. The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions. J. Neurosci. 2011, 31:4388-4396. 10.1523/JNEUROSCI.6164-10.2011.
    • (2011) J. Neurosci. , vol.31 , pp. 4388-4396
    • Stigloher, C.1    Zhan, H.2    Zhen, M.3    Richmond, J.4    Bessereau, J.L.5
  • 24
    • 84880000317 scopus 로고    scopus 로고
    • Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission
    • Spangler S.A., Schmitz S.K., Kevenaar J.T., de Graaff E., de Wit H., Demmers J., et al. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. J. Cell Biol. 2013, 201:915-928. 10.1083/jcb.201301011.
    • (2013) J. Cell Biol. , vol.201 , pp. 915-928
    • Spangler, S.A.1    Schmitz, S.K.2    Kevenaar, J.T.3    de Graaff, E.4    de Wit, H.5    Demmers, J.6
  • 25
    • 77950869684 scopus 로고    scopus 로고
    • Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis
    • Mukherjee K., Yang X., Gerber S.H., Kwon H.-B., Ho A., Castillo P.E., et al. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc. Natl. Acad. Sci. USA 2010, 107:6504-6509. 10.1073/pnas.1002307107.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 6504-6509
    • Mukherjee, K.1    Yang, X.2    Gerber, S.H.3    Kwon, H.-B.4    Ho, A.5    Castillo, P.E.6
  • 27
    • 84908246400 scopus 로고    scopus 로고
    • The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones
    • Imig C., Min S.-W., Krinner S., Arancillo M., Rosenmund C., Südhof T.C., et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 2014, 84:416-431. 10.1016/j.neuron.2014.10.009.
    • (2014) Neuron , vol.84 , pp. 416-431
    • Imig, C.1    Min, S.-W.2    Krinner, S.3    Arancillo, M.4    Rosenmund, C.5    Südhof, T.C.6
  • 28
    • 84870044610 scopus 로고    scopus 로고
    • RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool
    • Muller M., Liu K.S.Y., Sigrist S.J., Davis G.W. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J. Neurosci. 2012, 32:16574-16585. 10.1523/JNEUROSCI.0981-12.2012.
    • (2012) J. Neurosci. , vol.32 , pp. 16574-16585
    • Muller, M.1    Liu, K.S.Y.2    Sigrist, S.J.3    Davis, G.W.4
  • 30
    • 84862860810 scopus 로고    scopus 로고
    • Release probability of hippocampal glutamatergic terminals scales with the size of the active zone
    • Holderith N., Lorincz A., Katona G., Rózsa B., Kulik A., Watanabe M., et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat. Neurosci. 2012, 15:988-997. 10.1038/nn.3137.
    • (2012) Nat. Neurosci. , vol.15 , pp. 988-997
    • Holderith, N.1    Lorincz, A.2    Katona, G.3    Rózsa, B.4    Kulik, A.5    Watanabe, M.6
  • 31
    • 84874208346 scopus 로고    scopus 로고
    • v2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels
    • v2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. J. Neurosci. 2013, 33:3668-3678. 10.1523/JNEUROSCI.2921-12.2013.
    • (2013) J. Neurosci. , vol.33 , pp. 3668-3678
    • Indriati, D.W.1    Kamasawa, N.2    Matsui, K.3    Meredith, A.L.4    Watanabe, M.5    Shigemoto, R.6
  • 33
    • 84907194005 scopus 로고    scopus 로고
    • Presynaptic and postsynaptic scaffolds: dynamics fast and slow
    • Ziv N.E., Fisher-Lavie A. Presynaptic and postsynaptic scaffolds: dynamics fast and slow. Neuroscientist 2014, 20:439-452. 10.1177/1073858414523321.
    • (2014) Neuroscientist , vol.20 , pp. 439-452
    • Ziv, N.E.1    Fisher-Lavie, A.2
  • 34
    • 58849123660 scopus 로고    scopus 로고
    • Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon
    • Tsuriel S., Fisher A., Wittenmayer N., Dresbach T., Garner C.C., Ziv N.E. Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J. Neurosci. 2009, 29:351-358. 10.1523/JNEUROSCI.4777-08.2009.
    • (2009) J. Neurosci. , vol.29 , pp. 351-358
    • Tsuriel, S.1    Fisher, A.2    Wittenmayer, N.3    Dresbach, T.4    Garner, C.C.5    Ziv, N.E.6
  • 35
    • 33845669155 scopus 로고    scopus 로고
    • Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice
    • Kalla S., Stern M., Basu J., Varoqueaux F., Reim K., Rosenmund C., et al. Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J. Neurosci. 2006, 26:13054-13066. 10.1523/JNEUROSCI.4330-06.2006.
    • (2006) J. Neurosci. , vol.26 , pp. 13054-13066
    • Kalla, S.1    Stern, M.2    Basu, J.3    Varoqueaux, F.4    Reim, K.5    Rosenmund, C.6
  • 36
    • 84881120151 scopus 로고    scopus 로고
    • Matching dynamics of presynaptic and postsynaptic scaffolds
    • Fisher-Lavie A., Ziv N.E. Matching dynamics of presynaptic and postsynaptic scaffolds. J. Neurosci. 2013, 33:13094-13100. 10.1523/JNEUROSCI.2144-13.2013.
    • (2013) J. Neurosci. , vol.33 , pp. 13094-13100
    • Fisher-Lavie, A.1    Ziv, N.E.2
  • 37
    • 84875031997 scopus 로고    scopus 로고
    • Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins
    • Schröder M.S., Stellmacher A., Romorini S., Marini C., Montenegro-Venegas C., Altrock W.D., et al. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins. PLoS ONE 2013, 8:e58814. 10.1371/journal.pone.0058814.
    • (2013) PLoS ONE , vol.8 , pp. e58814
    • Schröder, M.S.1    Stellmacher, A.2    Romorini, S.3    Marini, C.4    Montenegro-Venegas, C.5    Altrock, W.D.6
  • 38
    • 77952729399 scopus 로고    scopus 로고
    • Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release
    • Matz J., Gilyan A., Kolar A., McCarvill T., Krueger S.R. Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc. Natl. Acad. Sci. USA 2010, 107:8836-8841. 10.1073/pnas.0906087107.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 8836-8841
    • Matz, J.1    Gilyan, A.2    Kolar, A.3    McCarvill, T.4    Krueger, S.R.5
  • 39
    • 84877024444 scopus 로고    scopus 로고
    • Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance
    • Cohen L.D., Zuchman R., Sorokina O., Müller A., Dieterich D.C., Armstrong J.D., et al. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE 2013, 8:e63191. 10.1371/journal.pone.0063191.s012.
    • (2013) PLoS ONE , vol.8 , pp. e63191
    • Cohen, L.D.1    Zuchman, R.2    Sorokina, O.3    Müller, A.4    Dieterich, D.C.5    Armstrong, J.D.6
  • 41
    • 84887545227 scopus 로고    scopus 로고
    • Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity
    • Vitureira N., Goda Y. Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. J. Cell Biol. 2013, 203:175-186. 10.1083/jcb.201306030.
    • (2013) J. Cell Biol. , vol.203 , pp. 175-186
    • Vitureira, N.1    Goda, Y.2
  • 42
    • 84889672846 scopus 로고    scopus 로고
    • Molecular mechanisms driving homeostatic plasticity of neurotransmitter release
    • Lazarevic V., Pothula S., Andres-Alonso M., Fejtova A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front. Cell. Neurosci. 2013, 7:244. 10.3389/fncel.2013.00244.
    • (2013) Front. Cell. Neurosci. , vol.7 , pp. 244
    • Lazarevic, V.1    Pothula, S.2    Andres-Alonso, M.3    Fejtova, A.4
  • 43
    • 0035923749 scopus 로고    scopus 로고
    • Inactivity produces increases in neurotransmitter release and synapse size
    • Murthy V.N., Schikorski T., Stevens C.F., Zhu Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 2001, 32:673-682.
    • (2001) Neuron , vol.32 , pp. 673-682
    • Murthy, V.N.1    Schikorski, T.2    Stevens, C.F.3    Zhu, Y.4
  • 44
    • 84894274458 scopus 로고    scopus 로고
    • Presynaptic long-term plasticity
    • 5(October), 8.
    • Yang, Y., and Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5(October), 8. http://10.3389/fnsyn.2013.00008.
    • (2013) Frontiers in Synaptic Neuroscience
    • Yang, Y.1    Calakos, N.2
  • 46
    • 79955784858 scopus 로고    scopus 로고
    • Rapid active zone remodeling during synaptic plasticity
    • Weyhersmuller A., Hallermann S., Wagner N., Eilers J. Rapid active zone remodeling during synaptic plasticity. J. Neurosci. 2011, 31:6041-6052. 10.1523/JNEUROSCI.6698-10.2011.
    • (2011) J. Neurosci. , vol.31 , pp. 6041-6052
    • Weyhersmuller, A.1    Hallermann, S.2    Wagner, N.3    Eilers, J.4
  • 47
    • 79960383831 scopus 로고    scopus 로고
    • Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing
    • Lazarevic V., Schone C., Heine M., Gundelfinger E.D., Fejtova A. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J. Neurosci. 2011, 31:10189-10200. 10.1523/JNEUROSCI.2088-11.2011.
    • (2011) J. Neurosci. , vol.31 , pp. 10189-10200
    • Lazarevic, V.1    Schone, C.2    Heine, M.3    Gundelfinger, E.D.4    Fejtova, A.5
  • 48
    • 76149085199 scopus 로고    scopus 로고
    • A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing
    • Jiang X., Litkowski P.E., Taylor A.A., Lin Y., Snider B.J., Moulder K.L. A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing. J. Neurosci. 2010, 30:1798-1809. 10.1523/JNEUROSCI.4965-09.2010.
    • (2010) J. Neurosci. , vol.30 , pp. 1798-1809
    • Jiang, X.1    Litkowski, P.E.2    Taylor, A.A.3    Lin, Y.4    Snider, B.J.5    Moulder, K.L.6
  • 49
    • 0037122458 scopus 로고    scopus 로고
    • RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone
    • Schoch S., Castillo P.E., Jo T., Mukherjee K., Geppert M., Wang Y., et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002, 415:321-326. 10.1038/415321a.
    • (2002) Nature , vol.415 , pp. 321-326
    • Schoch, S.1    Castillo, P.E.2    Jo, T.3    Mukherjee, K.4    Geppert, M.5    Wang, Y.6
  • 50
    • 84875950775 scopus 로고    scopus 로고
    • Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation
    • Waites C.L., Leal-Ortiz S.A., Okerlund N., Dalke H., Fejtova A., Altrock W.D., et al. Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. The EMBO J. 2013, 32(7):954-969. 10.1038/emboj.2013.27.
    • (2013) The EMBO J. , vol.32 , Issue.7 , pp. 954-969
    • Waites, C.L.1    Leal-Ortiz, S.A.2    Okerlund, N.3    Dalke, H.4    Fejtova, A.5    Altrock, W.D.6
  • 51
    • 79956316684 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity through changes in presynaptic calcium influx
    • Zhao C., Dreosti E., Lagnado L. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 2011, 31:7492-7496. 10.1523/JNEUROSCI.6636-10.2011.
    • (2011) J. Neurosci. , vol.31 , pp. 7492-7496
    • Zhao, C.1    Dreosti, E.2    Lagnado, L.3
  • 52
    • 84890234317 scopus 로고    scopus 로고
    • RIM1α SUMOylation is required for fast synaptic vesicle exocytosis
    • Girach F., Craig T.J., Rocca D.L., Henley J.M. RIM1α SUMOylation is required for fast synaptic vesicle exocytosis. Cell Rep. 2013, 5:1294-1301. 10.1016/j.celrep.2013.10.039.
    • (2013) Cell Rep. , vol.5 , pp. 1294-1301
    • Girach, F.1    Craig, T.J.2    Rocca, D.L.3    Henley, J.M.4
  • 54
    • 84865363824 scopus 로고    scopus 로고
    • Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5
    • Su S.C., Seo J., Pan J.Q., Samuels B.A., Rudenko A., Ericsson M., et al. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 2012, 75:675-687. 10.1016/j.neuron.2012.06.023.
    • (2012) Neuron , vol.75 , pp. 675-687
    • Su, S.C.1    Seo, J.2    Pan, J.Q.3    Samuels, B.A.4    Rudenko, A.5    Ericsson, M.6
  • 55
    • 84895759534 scopus 로고    scopus 로고
    • Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner
    • Cijsouw T., Weber J.P., Broeke J.H., Broek J.A.C., Schut D., Kroon T., et al. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner. J. Cell Biol. 2014, 204:759-775. 10.1083/jcb.201308026.
    • (2014) J. Cell Biol. , vol.204 , pp. 759-775
    • Cijsouw, T.1    Weber, J.P.2    Broeke, J.H.3    Broek, J.A.C.4    Schut, D.5    Kroon, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.