메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1319-1328

Twitter opinion topic model: Extracting product opinions from tweets by leveraging hashtags and sentiment lexicon

Author keywords

Emoticons; Opinion mining; Product review; Sentiment analysis; Sentiment lexicon; Topic modeling; Twitter

Indexed keywords

KNOWLEDGE MANAGEMENT; PREDICTIVE ANALYTICS; SENTIMENT ANALYSIS; SOCIAL NETWORKING (ONLINE); STATISTICS;

EID: 84937622580     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2661829.2662005     Document Type: Conference Paper
Times cited : (66)

References (48)
  • 1
    • 85034054192 scopus 로고    scopus 로고
    • SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
    • S. Baccianella, A. Esuli, and F. Sebastiani. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In LREC, pages 2200-2204, 2010.
    • (2010) LREC , pp. 2200-2204
    • Baccianella, S.1    Esuli, A.2    Sebastiani, F.3
  • 2
    • 77955653875 scopus 로고    scopus 로고
    • A Bayesian review of the poisson-dirichlet process
    • W. Buntine and M. Hutter. A Bayesian review of the Poisson-Dirichlet process. arXiv:1007.0296v2, 2012.
    • (2012) ArXiv:1007.0296v2
    • Buntine, W.1    Hutter, M.2
  • 3
    • 80052420115 scopus 로고    scopus 로고
    • Sampling table configurations for the hierarchical poisson-dirichlet process
    • C. Chen, L. Du, and W. Buntine. Sampling table configurations for the hierarchical Poisson-Dirichlet Process. In ECML, pages 296-311, 2011.
    • (2011) ECML , pp. 296-311
    • Chen, C.1    Du, L.2    Buntine, W.3
  • 4
    • 80053291743 scopus 로고    scopus 로고
    • Enhanced sentiment learning using twitter hashtags and smileys
    • D. Davidov, O. Tsur, and A. Rappoport. Enhanced sentiment learning using Twitter hashtags and smileys. In COLING, pages 241-249, 2010.
    • (2010) COLING , pp. 241-249
    • Davidov, D.1    Tsur, O.2    Rappoport, A.3
  • 5
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • M. De Marneffe, B. MacCartney, and C. Manning. Generating typed dependency parses from phrase structure parses. In LREC, pages 449-454, 2006.
    • (2006) LREC , pp. 449-454
    • De Marneffe, M.1    MacCartney, B.2    Manning, C.3
  • 6
    • 42549170653 scopus 로고    scopus 로고
    • A holistic lexicon-based approach to opinion mining
    • ACM
    • X. Ding, B. Liu, and P. Yu. A holistic lexicon-based approach to opinion mining. In WSDM. ACM, 2008.
    • (2008) WSDM
    • Ding, X.1    Liu, B.2    Yu, P.3
  • 8
    • 78650122641 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • Stanford
    • A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages 1-12, 2009.
    • (2009) CS224N Project Report , pp. 1-12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 9
    • 84879744049 scopus 로고    scopus 로고
    • Automatically constructing a normalisation dictionary for microblogs
    • ACL
    • B. Han, P. Cook, and T. Baldwin. Automatically constructing a normalisation dictionary for microblogs. In EMNLP-CoNLL, pages 421-432. ACL, 2012.
    • (2012) EMNLP-CoNLL , pp. 421-432
    • Han, B.1    Cook, P.2    Baldwin, T.3
  • 10
    • 84873657672 scopus 로고    scopus 로고
    • Lexical normalization for social media text
    • Feb.
    • B. Han, P. Cook, and T. Baldwin. Lexical normalization for social media text. ACM TIST, 4(1):5:1-5:27, Feb. 2013.
    • (2013) ACM TIST , vol.4 , Issue.1 , pp. 501-527
    • Han, B.1    Cook, P.2    Baldwin, T.3
  • 11
    • 84863688889 scopus 로고    scopus 로고
    • Incorporating sentiment prior knowledge for weakly supervised sentiment analysis
    • Y. He. Incorporating sentiment prior knowledge for weakly supervised sentiment analysis. ACM TALIP, 11(2):4, 2012.
    • (2012) ACM TALIP , vol.11 , Issue.2 , pp. 4
    • He, Y.1
  • 12
    • 9444223818 scopus 로고    scopus 로고
    • Mining opinion features in customer reviews
    • M. Hu and B. Liu. Mining opinion features in customer reviews. In AAAI, volume 4, pages 755-760, 2004.
    • (2004) AAAI , vol.4 , pp. 755-760
    • Hu, M.1    Liu, B.2
  • 13
    • 85032592822 scopus 로고    scopus 로고
    • Incorporating lexical priors into topic models
    • ACM
    • J. Jagarlamudi, H. Daumé, III, and R. Udupa. Incorporating lexical priors into topic models. In EACL. ACM, 2012.
    • (2012) EACL
    • Jagarlamudi, J.1    Daumé, H.2    Udupa, R.3
  • 14
    • 83055184650 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification
    • L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao. Target-dependent Twitter sentiment classification. In ACL, pages 151-160, 2011.
    • (2011) ACL , pp. 151-160
    • Jiang, L.1    Yu, M.2    Zhou, M.3    Liu, X.4    Zhao, T.5
  • 15
    • 79952432020 scopus 로고    scopus 로고
    • Aspect and sentiment unification model for online review analysis
    • Y. Jo and A. Oh. Aspect and sentiment unification model for online review analysis. In WSDM, pages 815-824, 2011.
    • (2011) WSDM , pp. 815-824
    • Jo, Y.1    Oh, A.2
  • 16
    • 80053430466 scopus 로고    scopus 로고
    • Structure-aware review mining and summarization
    • ACL
    • F. Li, C. Han, M. Huang, X. Zhu, Y.-J. Xia, S. Zhang, and H. Yu. Structure-aware review mining and summarization. In COLING, pages 653-661. ACL, 2010.
    • (2010) COLING , pp. 653-661
    • Li, F.1    Han, C.2    Huang, M.3    Zhu, X.4    Xia, Y.-J.5    Zhang, S.6    Yu, H.7
  • 17
    • 78651345514 scopus 로고    scopus 로고
    • A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge
    • T. Li, Y. Zhang, and V. Sindhwani. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge. In AFNLP, pages 244-252, 2009.
    • (2009) AFNLP , pp. 244-252
    • Li, T.1    Zhang, Y.2    Sindhwani, V.3
  • 18
    • 74849120851 scopus 로고    scopus 로고
    • Joint sentiment/topic model for sentiment analysis
    • ACM
    • C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. In CIKM, pages 375-384. ACM, 2009.
    • (2009) CIKM , pp. 375-384
    • Lin, C.1    He, Y.2
  • 19
    • 85038601237 scopus 로고    scopus 로고
    • Sentiment analysis and opinion mining
    • B. Liu. Sentiment analysis and opinion mining. Synthesis Lectures on HLT, 5(1):1-167, 2012.
    • (2012) Synthesis Lectures on HLT , vol.5 , Issue.1 , pp. 1-167
    • Liu, B.1
  • 20
    • 84889560823 scopus 로고    scopus 로고
    • Adaptive co-training SVM for sentiment classification on tweets
    • ACM
    • S. Liu, F. Li, F. Li, X. Cheng, and H. Shen. Adaptive co-training SVM for sentiment classification on tweets. In CIKM, pages 2079-2088. ACM, 2013.
    • (2013) CIKM , pp. 2079-2088
    • Liu, S.1    Li, F.2    Li, F.3    Cheng, X.4    Shen, H.5
  • 21
    • 85118481535 scopus 로고    scopus 로고
    • Langid.py: An off-the-shelf language identification tool
    • M. Lui and T. Baldwin. langid.py: An off-the-shelf language identification tool. In ACL, pages 25-30, 2012.
    • (2012) ACL , pp. 25-30
    • Lui, M.1    Baldwin, T.2
  • 23
    • 80052767040 scopus 로고    scopus 로고
    • Spam detection on twitter using traditional classifiers
    • Springer
    • M. McCord and M. Chuah. Spam detection on Twitter using traditional classifiers. In Autonomic and Trusted Computing, pages 175-186. Springer, 2011.
    • (2011) Autonomic and Trusted Computing , pp. 175-186
    • McCord, M.1    Chuah, M.2
  • 24
    • 84883095788 scopus 로고    scopus 로고
    • Improving LDA topic models for microblogs via tweet pooling and automatic labeling
    • ACM
    • R. Mehrotra, S. Sanner, W. Buntine, and L. Xie. Improving LDA topic models for microblogs via Tweet pooling and automatic labeling. In SIGIR, pages 889-892. ACM, 2013.
    • (2013) SIGIR , pp. 889-892
    • Mehrotra, R.1    Sanner, S.2    Buntine, W.3    Xie, L.4
  • 25
    • 35348882767 scopus 로고    scopus 로고
    • Topic sentiment mixture: Modeling facets and opinions in weblogs
    • Q. Mei, X. Ling, M. Wondra, et al. Topic Sentiment Mixture: Modeling facets and opinions in weblogs. In WWW, 2007.
    • (2007) WWW
    • Mei, Q.1    Ling, X.2    Wondra, M.3
  • 26
    • 78651272512 scopus 로고    scopus 로고
    • Opinion digger: An unsupervised opinion miner from unstructured product reviews
    • ACM
    • S. Moghaddam and M. Ester. Opinion Digger: An unsupervised opinion miner from unstructured product reviews. In CIKM, pages 1825-1828. ACM, 2010.
    • (2010) CIKM , pp. 1825-1828
    • Moghaddam, S.1    Ester, M.2
  • 27
    • 80052136882 scopus 로고    scopus 로고
    • ILDA: Interdependent LDA model for learning latent aspects and their ratings from online product reviews
    • S. Moghaddam and M. Ester. ILDA: Interdependent LDA model for learning latent aspects and their ratings from online product reviews. In SIGIR, pages 665-674, 2011.
    • (2011) SIGIR , pp. 665-674
    • Moghaddam, S.1    Ester, M.2
  • 28
    • 84937591228 scopus 로고    scopus 로고
    • On the design of LDA models for aspect-based opinion mining
    • ACM
    • S. Moghaddam and M. Ester. On the design of LDA models for aspect-based opinion mining. In CIKM. ACM, 2012.
    • (2012) CIKM
    • Moghaddam, S.1    Ester, M.2
  • 30
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • R. Neal. Slice sampling. Ann. Statist., 31(3):705-767, 2003.
    • (2003) Ann. Statist. , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.1
  • 31
    • 84919651291 scopus 로고    scopus 로고
    • Improved part-of-speech tagging for online conversational text with word clusters
    • O. Owoputi, B. O'Connor, C. Dyer, et al. Improved part-of-speech tagging for online conversational text with word clusters. In NAACL-HLT, pages 380-390, 2013.
    • (2013) NAACL-HLT , pp. 380-390
    • Owoputi, O.1    O'Connor, B.2    Dyer, C.3
  • 32
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In LREC, 2010.
    • (2010) LREC
    • Pak, A.1    Paroubek, P.2
  • 34
    • 0000130672 scopus 로고    scopus 로고
    • Some developments of the Blackwell-MacQueen urn scheme
    • J. Pitman. Some developments of the Blackwell-Macqueen urn scheme. Lecture Notes-Monograph Series, 1996.
    • (1996) Lecture Notes-Monograph Series
    • Pitman, J.1
  • 36
    • 80053238545 scopus 로고    scopus 로고
    • Named entity recognition in tweets: An experimental study
    • A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recognition in Tweets: An experimental study. In EMNLP, pages 1524-1534, 2011.
    • (2011) EMNLP , pp. 1524-1534
    • Ritter, A.1    Clark, S.2    Mausam3    Etzioni, O.4
  • 38
    • 33750728174 scopus 로고    scopus 로고
    • A Bayesian interpretation of interpolated kneser-ney
    • Y. W. Teh. A Bayesian interpretation of interpolated Kneser-Ney. Tech Report A2/06, NUS, 2006.
    • (2006) Tech Report A2/06, NUS
    • Teh, Y.W.1
  • 39
    • 38049151407 scopus 로고    scopus 로고
    • A hierarchical Bayesian language model based on pitman-yor processes
    • ACL
    • Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In ACL, pages 985-992. ACL, 2006.
    • (2006) ACL , pp. 985-992
    • Teh, Y.W.1
  • 41
    • 78449308783 scopus 로고    scopus 로고
    • Sentiment strength detection in short informal text
    • M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas. Sentiment strength detection in short informal text. JASIST, 61(12):2544-2558, 2010.
    • (2010) JASIST , vol.61 , Issue.12 , pp. 2544-2558
    • Thelwall, M.1    Buckley, K.2    Paltoglou, G.3    Cai, D.4    Kappas, A.5
  • 42
    • 84859906262 scopus 로고    scopus 로고
    • A joint model of text and aspect ratings for sentiment summarization
    • I. Titov and R. McDonald. A joint model of text and aspect ratings for sentiment summarization. In ACL08: HLT, 2008.
    • (2008) ACL08: HLT
    • Titov, I.1    McDonald, R.2
  • 43
    • 57349120510 scopus 로고    scopus 로고
    • Modeling online reviews with multi-grain topic models
    • I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In WWW, pages 111-120, 2008.
    • (2008) Www , pp. 111-120
    • Titov, I.1    McDonald, R.2
  • 44
    • 84890662077 scopus 로고    scopus 로고
    • ICWSM - A great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews
    • O. Tsur, D. Davidov, and A. Rappoport. ICWSM - A great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In ICWSM, 2010.
    • (2010) ICWSM
    • Tsur, O.1    Davidov, D.2    Rappoport, A.3
  • 45
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level sentiment analysis. In HLT-EMNLP, pages 347-354, 2005.
    • (2005) HLT-EMNLP , pp. 347-354
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 46
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, pages 177-186, 2011.
    • (2011) WSDM , pp. 177-186
    • Yang, J.1    Leskovec, J.2
  • 47
    • 84995774405 scopus 로고    scopus 로고
    • Comparing twitter and traditional media using topic models
    • W. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing Twitter and traditional media using topic models. In ECIR, pages 338-349, 2011.
    • (2011) ECIR , pp. 338-349
    • Zhao, W.1    Jiang, J.2    Weng, J.3    He, J.4    Lim, E.-P.5    Yan, H.6    Li, X.7
  • 48
    • 80053240424 scopus 로고    scopus 로고
    • Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid
    • W. Zhao, J. Jiang, H. Yan, and X. Li. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In EMNLP, pages 56-65, 2010.
    • (2010) EMNLP , pp. 56-65
    • Zhao, W.1    Jiang, J.2    Yan, H.3    Li, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.