메뉴 건너뛰기




Volumn , Issue , 2014, Pages 739-748

Exploiting geographical neighborhood characteristics for location recommendation

Author keywords

Geographical neighborhood; Location recommendation; Location based social networks; Matrix factorization

Indexed keywords

FACTORIZATION; KNOWLEDGE MANAGEMENT; LOCATION; MATRIX ALGEBRA;

EID: 84937575446     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2661829.2662002     Document Type: Conference Paper
Times cited : (361)

References (36)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 17(6):734-749, 2005.
    • (2005) TKDE , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 84872759615 scopus 로고    scopus 로고
    • Location-based and preference-aware recommendation using sparse geo-social networking data
    • J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-aware recommendation using sparse geo-social networking data. In ACM SIGSPATIAL GIS, 2012.
    • (2012) ACM SIGSPATIAL GIS
    • Bao, J.1    Zheng, Y.2    Mokbel, M.F.3
  • 3
    • 85167399956 scopus 로고    scopus 로고
    • Fused matrix factorization with geographical and social influence in location-based social networks
    • C. Cheng, H. Yang, I. King, and M. Lyu. Fused matrix factorization with geographical and social influence in location-based social networks. AAAI, 2012.
    • (2012) AAAI
    • Cheng, C.1    Yang, H.2    King, I.3    Lyu, M.4
  • 4
    • 84890656008 scopus 로고    scopus 로고
    • The livehoods project: Utilizing social media to understand the dynamics of a city
    • J. Cranshaw, R. Schwartz, J. Hong, and N. Sadeh. The livehoods project: Utilizing social media to understand the dynamics of a city. ICWSM, 2012.
    • (2012) ICWSM
    • Cranshaw, J.1    Schwartz, R.2    Hong, J.3    Sadeh, N.4
  • 5
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. Das, D. Mayur, and A. Garg. Google News Personalization: Scalable Online Collaborative Filtering. In WWW, 2007.
    • (2007) WWW
    • Das, A.1    Mayur, D.2    Garg, A.3
  • 7
    • 84904559853 scopus 로고    scopus 로고
    • Your neighbors affect your ratings: On geographical neighborhood influence to rating prediction
    • ACM
    • L. Hu, A. Sun, and Y. Liu. Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction. In SIGIR, pages 345-354. ACM, 2014.
    • (2014) SIGIR , pp. 345-354
    • Hu, L.1    Sun, A.2    Liu, Y.3
  • 8
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, F. Park, Y. Koren, and C. Volinsky. Collaborative Filtering for Implicit Feedback Datasets. In ICDM, 2008.
    • (2008) ICDM
    • Hu, Y.1    Park, F.2    Koren, Y.3    Volinsky, C.4
  • 9
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38(4):1978-2004, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.4 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 10
    • 71149112556 scopus 로고    scopus 로고
    • Learning with structured sparsity
    • J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. ICML, 2009.
    • (2009) ICML
    • Huang, J.1    Zhang, T.2    Metaxas, D.3
  • 11
    • 71149113559 scopus 로고    scopus 로고
    • Group lasso with overlap and graph lasso
    • L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In ICML, 2009.
    • (2009) ICML
    • Jacob, L.1    Obozinski, G.2    Vert, J.-P.3
  • 12
    • 84863123297 scopus 로고    scopus 로고
    • Structured sparse principal component analysis
    • R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. In AISTATS, 2010.
    • (2010) AISTATS
    • Jenatton, R.1    Obozinski, G.2    Bach, F.3
  • 13
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, pages 543-550, 2010.
    • (2010) ICML , pp. 543-550
    • Kim, S.1    Xing, E.P.2
  • 14
    • 77956517638 scopus 로고    scopus 로고
    • Sparsistent learning of varying-coefficient models with structural changes
    • M. Kolar, L. Song, and E. P. Xing. Sparsistent learning of varying-coefficient models with structural changes. In NIPS, pages 1006-1014, 2009.
    • (2009) NIPS , pp. 1006-1014
    • Kolar, M.1    Song, L.2    Xing, E.P.3
  • 15
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 16
    • 84864272135 scopus 로고    scopus 로고
    • Lars: A location-aware recommender system
    • IEEE
    • J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware recommender system. In ICDE, pages 450-461. IEEE, 2012.
    • (2012) ICDE , pp. 450-461
    • Levandoski, J.J.1    Sarwat, M.2    Eldawy, A.3    Mokbel, M.F.4
  • 17
    • 85019246471 scopus 로고    scopus 로고
    • Learning geographical preferences for point-of-interest recommendation
    • ACM
    • B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for point-of-interest recommendation. In KDD, pages 1043-1051. ACM, 2013.
    • (2013) KDD , pp. 1043-1051
    • Liu, B.1    Fu, Y.2    Yao, Z.3    Xiong, H.4
  • 18
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2:849-856, 2002.
    • (2002) NIPS , vol.2 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 19
    • 67149083078 scopus 로고    scopus 로고
    • One-class collaborative filtering
    • R. Pan, Y. Zhou, B. Cao, and N. N. Liu. One-Class Collaborative Filtering. In ICDM, 2008.
    • (2008) ICDM
    • Pan, R.1    Zhou, Y.2    Cao, B.3    Liu, N.N.4
  • 20
    • 80052651383 scopus 로고    scopus 로고
    • A case study in a recommender system based on purchase data categories and subject descriptors
    • B. Pradel, S. Sean, and N. Usunier. A case study in a recommender system based on purchase data categories and subject descriptors. In KDD, pages 377-385, 2011.
    • (2011) KDD , pp. 377-385
    • Pradel, B.1    Sean, S.2    Usunier, N.3
  • 21
    • 78650134987 scopus 로고    scopus 로고
    • BPR: Bayesian personalized ranking from implicit feedback
    • S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-thieme. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI, pages 452-461, 2009.
    • (2009) UAI , pp. 452-461
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 22
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • ACM
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295. ACM, 2001.
    • (2001) WWW , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 23
    • 80052653727 scopus 로고    scopus 로고
    • Exploiting place features in link prediction on location-based social networks
    • S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link prediction on location-based social networks. In KDD, pages 1046-1054, 2011.
    • (2011) KDD , pp. 1046-1054
    • Scellato, S.1    Noulas, A.2    Mascolo, C.3
  • 24
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
    • K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pacific J. Optimization, pages 615-640, 2010.
    • (2010) Pacific J. Optimization , pp. 615-640
    • Toh, K.-C.1    Yun, S.2
  • 25
    • 84893503725 scopus 로고    scopus 로고
    • Location recommendation in location-based social networks using user check-in data
    • ACM
    • H. Wang, M. Terrovitis, and N. Mamoulis. Location recommendation in location-based social networks using user check-in data. In ACM SIGSPATIAL GIS, pages 364-373. ACM, 2013.
    • (2013) ACM SIGSPATIAL GIS , pp. 364-373
    • Wang, H.1    Terrovitis, M.2    Mamoulis, N.3
  • 26
    • 80052134524 scopus 로고    scopus 로고
    • Exploiting geographical influence for collaborative point-of-interest recommendation
    • M. Ye, P. Yin, and W. Lee. Exploiting geographical influence for collaborative point-of-interest recommendation. In SIGIR, pages 325-334, 2011.
    • (2011) SIGIR , pp. 325-334
    • Ye, M.1    Yin, P.2    Lee, W.3
  • 28
    • 85019186677 scopus 로고    scopus 로고
    • Lcars: A location-content-aware recommender system
    • ACM
    • H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: A location-content-aware recommender system. In KDD, pages 221-229. ACM, 2013.
    • (2013) KDD , pp. 221-229
    • Yin, H.1    Sun, Y.2    Cui, B.3    Hu, Z.4    Chen, L.5
  • 29
    • 84866045445 scopus 로고    scopus 로고
    • Discovering regions of different functions in a city using human mobility and pois
    • ACM
    • J. Yuan, Y. Zheng, and X. Xie. Discovering regions of different functions in a city using human mobility and pois. In KDD, pages 186-194. ACM, 2012.
    • (2012) KDD , pp. 186-194
    • Yuan, J.1    Zheng, Y.2    Xie, X.3
  • 31
    • 84883083735 scopus 로고    scopus 로고
    • Time-aware point-of-interest recommendation
    • ACM
    • Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-interest recommendation. In SIGIR, pages 363-372. ACM, 2013.
    • (2013) SIGIR , pp. 363-372
    • Yuan, Q.1    Cong, G.2    Ma, Z.3    Sun, A.4    Thalmann, N.M.5
  • 32
    • 84964655425 scopus 로고    scopus 로고
    • Igslr: Personalized geo-social location recommendation: A kernel density estimation approach
    • ACM
    • J.-D. Zhang and C.-Y. Chow. igslr: personalized geo-social location recommendation: a kernel density estimation approach. In ACM SIGSPATIAL GIS. ACM, 2013.
    • (2013) ACM SIGSPATIAL GIS
    • Zhang, J.-D.1    Chow, C.-Y.2
  • 33
    • 85078067524 scopus 로고    scopus 로고
    • Collaborative filtering meets mobile recommendation: A user-centered approach
    • V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative Filtering Meets Mobile Recommendation: A User-centered Approach. In AAAI, 2010.
    • (2010) AAAI
    • Zheng, V.W.1    Cao, B.2    Zheng, Y.3    Xie, X.4    Yang, Q.5
  • 34
    • 77954577189 scopus 로고    scopus 로고
    • Collaborative location and activity recommendations with GPS history data
    • V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and activity recommendations with GPS history data. WWW, pages 1029-1038, 2010.
    • (2010) WWW , pp. 1029-1038
    • Zheng, V.W.1    Zheng, Y.2    Xie, X.3    Yang, Q.4
  • 35
    • 84879470863 scopus 로고    scopus 로고
    • Tutorial on location-based social networks
    • Y. Zheng. Tutorial on location-based social networks. WWW, 2012.
    • (2012) WWW
    • Zheng, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.