-
1
-
-
78650118424
-
Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals
-
Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals J. Am. Chem. Soc. 2010, 132, 17384 10.1021/ja108427b
-
(2010)
J. Am. Chem. Soc.
, vol.132
-
-
Guo, Q.1
Ford, G.M.2
Yang, W.-C.3
Walker, B.C.4
Stach, E.A.5
Hillhouse, H.W.6
Agrawal, R.7
-
3
-
-
84884536527
-
CZTS nanocrystals: A promising approach for next generation thin film photovoltaics
-
Zhou, H.; Hsu, W.-C.; Duan, H.-S.; Bob, B.; Yang, W.; Song, T.-B.; Hsu, C.-J.; Yang, Y. CZTS nanocrystals: a promising approach for next generation thin film photovoltaics Energy Environ. Sci. 2013, 6, 2822 10.1039/c3ee41627e
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2822
-
-
Zhou, H.1
Hsu, W.-C.2
Duan, H.-S.3
Bob, B.4
Yang, W.5
Song, T.-B.6
Hsu, C.-J.7
Yang, Y.8
-
4
-
-
84884929453
-
A Route to Phase Controllable Cu2ZnSn(S1-xSex)4 Nanocrystals with Tunable Energy Bands
-
Ji, S.; Shi, T.; Qiu, X.; Zhang, J.; Xu, G.; Chen, C.; Jiang, Z.; Ye, C. A Route to Phase Controllable Cu2ZnSn(S1-xSex)4 Nanocrystals with Tunable Energy Bands Sci. Rep. 2013, 3, 2733 10.1038/srep02733
-
(2013)
Sci. Rep.
, vol.3
, pp. 2733
-
-
Ji, S.1
Shi, T.2
Qiu, X.3
Zhang, J.4
Xu, G.5
Chen, C.6
Jiang, Z.7
Ye, C.8
-
5
-
-
84865057892
-
4 (CZTS) nanocrystals: Effect of Cu concentrations
-
4 (CZTS) nanocrystals: Effect of Cu concentrations J. Alloys Compd. 2012, 541, 192 10.1016/j.jallcom.2012.06.086
-
(2012)
J. Alloys Compd.
, vol.541
, pp. 192
-
-
Shin, S.W.1
Han, J.H.2
Park, C.Y.3
Kim, S.-R.4
Park, Y.C.5
Agawane, G.L.6
Moholkar, A.V.7
Yun, J.H.8
Jeong, C.H.9
Lee, J.Y.10
Kim, J.H.11
-
6
-
-
84885408422
-
4 nanocrystals
-
4 nanocrystals Angew. Chem., Int. Ed. 2013, 52, 9120 10.1002/anie.201302867
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 9120
-
-
Singh, A.1
Singh, S.2
Levcenko, S.3
Unold, T.4
Laffir, F.5
Ryan, K.M.6
-
10
-
-
84860797554
-
Alkylthiol-Enabled Se Powder Dissolution in Oleylamine at Room Temperature for the Phosphine-Free Synthesis of Copper-Based Quaternary Selenide Nanocrystals
-
Liu, Y.; Yao, D.; Shen, L.; Zhang, H.; Zhang, X.; Yang, B. Alkylthiol-Enabled Se Powder Dissolution in Oleylamine at Room Temperature for the Phosphine-Free Synthesis of Copper-Based Quaternary Selenide Nanocrystals J. Am. Chem. Soc. 2012, 134, 7207 10.1021/ja300064t
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7207
-
-
Liu, Y.1
Yao, D.2
Shen, L.3
Zhang, H.4
Zhang, X.5
Yang, B.6
-
11
-
-
84863373837
-
4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands
-
4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands J. Am. Chem. Soc. 2012, 134, 5010 10.1021/ja2105812
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 5010
-
-
Jiang, C.1
Lee, J.-S.2
Talapin, D.V.3
-
12
-
-
84878691733
-
Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications
-
Aldakov, D.; Lefrancois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications J. Mater. Chem. C 2013, 1, 3756 10.1039/c3tc30273c
-
(2013)
J. Mater. Chem. C
, vol.1
, pp. 3756
-
-
Aldakov, D.1
Lefrancois, A.2
Reiss, P.3
-
14
-
-
84909619784
-
Assembly of binary, ternary and quaternary compound semiconductor nanorods: From local to device scale ordering influenced by surface charge
-
Ryan, K. M.; Singh, S.; Liu, P.; Singh, A. Assembly of binary, ternary and quaternary compound semiconductor nanorods: From local to device scale ordering influenced by surface charge CrystEngComm 2014, 16, 9446 10.1039/C4CE00679H
-
(2014)
CrystEngComm
, vol.16
, pp. 9446
-
-
Ryan, K.M.1
Singh, S.2
Liu, P.3
Singh, A.4
-
15
-
-
0037418366
-
Anisotropic Shape Control of Colloidal Inorganic Nanocrystals
-
Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals Adv. Mater. 2003, 15, 441 10.1002/adma.200390102
-
(2003)
Adv. Mater.
, vol.15
, pp. 441
-
-
Lee, S.M.1
Cho, S.N.2
Cheon, J.3
-
17
-
-
79957996081
-
2 nanocrystals and their side-by-side nanorod assemblies
-
2 nanocrystals and their side-by-side nanorod assemblies CrystEngComm 2011, 13, 4039 10.1039/c0ce00451k
-
(2011)
CrystEngComm
, vol.13
, pp. 4039
-
-
Lu, X.1
Zhuang, Z.2
Peng, Q.3
Li, Y.4
-
20
-
-
84930225178
-
Synergistic Role of Dopants on the Morphology of Alloyed Copper Chalcogenide Nanocrystals
-
Singh, A.; Singh, A.; Ciston, J.; Bustillo, K.; Nordlund, D.; Milliron, D. J. Synergistic Role of Dopants on the Morphology of Alloyed Copper Chalcogenide Nanocrystals J. Am. Chem. Soc. 2015, 137, 6464 10.1021/jacs.5b02880
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6464
-
-
Singh, A.1
Singh, A.2
Ciston, J.3
Bustillo, K.4
Nordlund, D.5
Milliron, D.J.6
-
21
-
-
84892979456
-
Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods
-
Mainz, R.; Singh, A.; Levcenko, S.; Klaus, M.; Genzel, C.; Ryan, K. M.; Unold, T. Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods Nat. Commun. 2014, 5, 3133 10.1038/ncomms4133
-
(2014)
Nat. Commun.
, vol.5
, pp. 3133
-
-
Mainz, R.1
Singh, A.2
Levcenko, S.3
Klaus, M.4
Genzel, C.5
Ryan, K.M.6
Unold, T.7
-
26
-
-
84855654241
-
Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals
-
Norako, M. E.; Greaney, M. J.; Brutchey, R. L. Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals J. Am. Chem. Soc. 2012, 134, 23 10.1021/ja206929s
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 23
-
-
Norako, M.E.1
Greaney, M.J.2
Brutchey, R.L.3
-
28
-
-
84862538368
-
4 nanocrystals for high-performance organic-inorganic hybrid photodetectors
-
4 nanocrystals for high-performance organic-inorganic hybrid photodetectors NPG Asia Mater. 2012, 4, e2 10.1038/am.2012.2
-
(2012)
NPG Asia Mater.
, vol.4
, pp. 2
-
-
Wang, J.-J.1
Hu, J.-S.2
Guo, Y.-G.3
Wan, L.-J.4
-
29
-
-
84896952334
-
Polarity-Driven Polytypic Branching in Cu-Based Quaternary Chalcogenide Nanostructures
-
Zamani, R. R.; Ibáñez, M.; Luysberg, M.; García-Castelló, N.; Houben, L.; Prades, J. D.; Grillo, V.; Dunin-Borkowski, R. E.; Morante, J. R.; Cabot, A.; Arbiol, J. Polarity-Driven Polytypic Branching in Cu-Based Quaternary Chalcogenide Nanostructures ACS Nano 2014, 8, 2290 10.1021/nn405747h
-
(2014)
ACS Nano
, vol.8
, pp. 2290
-
-
Zamani, R.R.1
Ibáñez, M.2
Luysberg, M.3
García-Castelló, N.4
Houben, L.5
Prades, J.D.6
Grillo, V.7
Dunin-Borkowski, R.E.8
Morante, J.R.9
Cabot, A.10
Arbiol, J.11
-
30
-
-
84878404866
-
3 tetrapod nanocrystals
-
3 tetrapod nanocrystals J. Am. Chem. Soc. 2013, 135, 7835 10.1021/ja403083p
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 7835
-
-
Wang, J.1
Singh, A.2
Liu, P.3
Singh, S.4
Coughlan, C.5
Guo, Y.6
Ryan, K.M.7
-
33
-
-
84871802144
-
Linearly arranged polytypic CZTSSe nanocrystals
-
Fan, F. J.; Wu, L.; Gong, M.; Chen, S. Y.; Liu, G. Y.; Yao, H. B.; Liang, H. W.; Wang, Y. X.; Yu, S. H. Linearly arranged polytypic CZTSSe nanocrystals Sci. Rep. 2012, 2, 952 10.1038/srep00952
-
(2012)
Sci. Rep.
, vol.2
, pp. 952
-
-
Fan, F.J.1
Wu, L.2
Gong, M.3
Chen, S.Y.4
Liu, G.Y.5
Yao, H.B.6
Liang, H.W.7
Wang, Y.X.8
Yu, S.H.9
-
34
-
-
84870912902
-
3 Nanoparticles as Thermoelectric Materials
-
3 Nanoparticles as Thermoelectric Materials Chem. Mater. 2012, 24, 4615 10.1021/cm303252q
-
(2012)
Chem. Mater.
, vol.24
, pp. 4615
-
-
Ibáñez, M.1
Zamani, R.2
Li, W.3
Cadavid, D.4
Gorsse, S.5
Katcho, N.A.6
Shavel, A.7
López, A.M.8
Morante, J.R.9
Arbiol, J.10
Cabot, A.11
-
35
-
-
77957312661
-
Seebeck Tuning in Chalcogenide Nanoplate Assemblies by Nanoscale Heterostructuring
-
Mehta, R. J.; Karthik, C.; Singh, B.; Teki, R.; Borca-Tasciuc, T.; Ramanath, G. Seebeck Tuning in Chalcogenide Nanoplate Assemblies by Nanoscale Heterostructuring ACS Nano 2010, 4, 5055 10.1021/nn101322p
-
(2010)
ACS Nano
, vol.4
, pp. 5055
-
-
Mehta, R.J.1
Karthik, C.2
Singh, B.3
Teki, R.4
Borca-Tasciuc, T.5
Ramanath, G.6
-
36
-
-
84924363116
-
Composition Control and Formation Pathway of CZTS and CZTGS Nanocrystal Inks for Kesterite Solar Cells
-
Collord, A. D.; Hillhouse, H. W. Composition Control and Formation Pathway of CZTS and CZTGS Nanocrystal Inks for Kesterite Solar Cells Chem. Mater. 2015, 27, 1855 10.1021/acs.chemmater.5b00104
-
(2015)
Chem. Mater.
, vol.27
, pp. 1855
-
-
Collord, A.D.1
Hillhouse, H.W.2
-
37
-
-
84926459389
-
4 Nanocrystals through Cation Exchange for Photovoltaic Devices
-
4 Nanocrystals through Cation Exchange for Photovoltaic Devices Chem. Mater. 2014, 26, 5492 10.1021/cm501424n
-
(2014)
Chem. Mater.
, vol.26
, pp. 5492
-
-
Wang, Y.-X.1
Wei, M.2
Fan, F.-J.3
Zhuang, T.-T.4
Wu, L.5
Yu, S.-H.6
Zhu, C.-F.7
-
38
-
-
84900308006
-
4 Nanoparticles
-
4 Nanoparticles J. Am. Chem. Soc. 2014, 136, 6684 10.1021/ja501786s
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 6684
-
-
Tan, J.M.R.1
Lee, Y.H.2
Pedireddy, S.3
Baikie, T.4
Ling, X.Y.5
Wong, L.H.6
-
39
-
-
77950249008
-
Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches
-
Zhang, J.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches Science 2010, 327, 1634 10.1126/science.1184769
-
(2010)
Science
, vol.327
, pp. 1634
-
-
Zhang, J.1
Tang, Y.2
Lee, K.3
Ouyang, M.4
-
40
-
-
0034723001
-
Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals
-
Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals J. Am. Chem. Soc. 2000, 122, 12700 10.1021/ja003055+
-
(2000)
J. Am. Chem. Soc.
, vol.122
-
-
Manna, L.1
Scher, E.C.2
Alivisatos, A.P.3
-
43
-
-
84888330191
-
4 Nanorods
-
4 Nanorods J. Phys. Chem. Lett. 2013, 4, 3918 10.1021/jz402048p
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 3918
-
-
Thompson, M.J.1
Ruberu, T.P.A.2
Blakeney, K.J.3
Torres, K.V.4
Dilsaver, P.S.5
Vela, J.6
-
44
-
-
84881466772
-
2) particles for solar energy harvesting
-
2) particles for solar energy harvesting RSC Adv. 2013, 3, 9829 10.1039/c3ra40961a
-
(2013)
RSC Adv.
, vol.3
, pp. 9829
-
-
Wang, M.1
Batabyal, S.K.2
Li, Z.3
Li, D.4
Mhaisalkar, S.G.5
Lam, Y.M.6
|