-
1
-
-
0346061723
-
High-dimensional data analysis: The curses and blessings of dimensionality
-
D. L. Donoho, "High-dimensional data analysis: The curses and blessings of dimensionality, " AMS Math Challenges Lecture, pp. 1-32, 2000.
-
(2000)
AMS Math Challenges Lecture
, pp. 1-32
-
-
Donoho, D.L.1
-
2
-
-
84984934346
-
Gene expression informatics-it's all in your mine
-
D. E. Bassett, M. B. Eisen, and M. S. Boguski, "Gene expression informatics-it's all in your mine, " Nature genetics, vol. 21, pp. 51-55, 1999.
-
(1999)
Nature Genetics
, vol.21
, pp. 51-55
-
-
Bassett, D.E.1
Eisen, M.B.2
Boguski, M.S.3
-
3
-
-
84889691471
-
Introduction to biomedical imaging
-
A. Webb and G. C. Kagadis, "Introduction to biomedical imaging, " Medical Physics, vol. 30, no. 8, pp. 2267-2267, 2003.
-
(2003)
Medical Physics
, vol.30
, Issue.8
, pp. 2267-2267
-
-
Webb, A.1
Kagadis, G.C.2
-
4
-
-
49449118343
-
Robust machine learning applied to astronomical data sets probabilistic photometric redshifts for galaxies and quasars in the sdss and galex
-
N. M. Ball, R. J. Brunner, A. D. Myers, N. E. Strand, S. L. Alberts, and D. Tcheng, "Robust machine learning applied to astronomical data sets probabilistic photometric redshifts for galaxies and quasars in the sdss and galex, " The Astrophysical Journal, vol. 683, no. 1, pp. 12-21, 2008.
-
(2008)
The Astrophysical Journal
, vol.683
, Issue.1
, pp. 12-21
-
-
Ball, N.M.1
Brunner, R.J.2
Myers, A.D.3
Strand, N.E.4
Alberts, S.L.5
Tcheng, D.6
-
5
-
-
0037076322
-
Selection bias in gene extraction on the basis of microarray gene-expression data
-
C. Ambroise and G. J. McLachlan, "Selection bias in gene extraction on the basis of microarray gene-expression data, " Proceedings of the national academy of sciences, vol. 99, no. 10, pp. 6562-6566, 2002.
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, Issue.10
, pp. 6562-6566
-
-
Ambroise, C.1
McLachlan, G.J.2
-
7
-
-
84902167747
-
On criticality in highdimensional data
-
S. Saremi and T. J. Sejnowski, "On criticality in highdimensional data, " Neural computation, vol. 26, no. 7, pp. 1329-1339, 2014.
-
(2014)
Neural Computation
, vol.26
, Issue.7
, pp. 1329-1339
-
-
Saremi, S.1
Sejnowski, T.J.2
-
8
-
-
1342330535
-
Is cross-validation valid for small-sample microarray classification"
-
U. M. Braga-Neto and E. R. Dougherty, "Is cross-validation valid for small-sample microarray classification" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 374-380
-
-
Braga-Neto, U.M.1
Dougherty, E.R.2
-
9
-
-
84875879529
-
In-sample and out-of-sample model selection and error estimation for support vector machines
-
D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and out-of-sample model selection and error estimation for support vector machines, " IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, pp. 1390-1406, 2012.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
Ridella, S.4
-
11
-
-
24944572401
-
Maps for the visualization of high-dimensional data spaces
-
A. Ultsch, "Maps for the visualization of high-dimensional data spaces, " in Workshop on Self-Organizing Maps, 2003.
-
(2003)
Workshop on Self-Organizing Maps
-
-
Ultsch, A.1
-
14
-
-
81955161252
-
Non-parametric detection of meaningless distances in high dimensional data
-
A. Kabán, "Non-parametric detection of meaningless distances in high dimensional data, " Statistics and Computing, vol. 22, no. 2, pp. 375-385, 2012.
-
(2012)
Statistics and Computing
, vol.22
, Issue.2
, pp. 375-385
-
-
Kabán, A.1
-
16
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net, " Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
17
-
-
33746036704
-
Towards a theoretical foundation for laplacian-based manifold methods
-
M. Belkin and P. Niyogi, "Towards a theoretical foundation for laplacian-based manifold methods, " in Learning theory, 2005.
-
(2005)
Learning Theory
-
-
Belkin, M.1
Niyogi, P.2
-
19
-
-
84894659831
-
Sparse k-means with the lq (0 i q i 1) constraint for high-dimensional data clustering
-
Y. Wang, X. Chang, R. Li, and Z. Xu, "Sparse k-means with the lq (0 i q i 1) constraint for high-dimensional data clustering, " in IEEE International Conference on Data Mining, 2013.
-
(2013)
IEEE International Conference on Data Mining
-
-
Wang, Y.1
Chang, X.2
Li, R.3
Xu, Z.4
-
21
-
-
84936853791
-
The more, the merrier: The blessing of dimensionality for learning large Gaussian mixtures
-
J. Anderson, M. Belkin, N. Goyal, R. L., and J. Voss, "The more, the merrier: the blessing of dimensionality for learning large Gaussian mixtures, " Journal of Machine Learning Research, vol. 35, pp. 1-30, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.35
, pp. 1-30
-
-
Anderson, J.1
Belkin, M.2
Goyal R L, N.3
Voss, J.4
-
22
-
-
0000028873
-
A reality check for data snooping
-
H. White, "A reality check for data snooping, " Econometrica, vol. 68, no. 5, pp. 1097-1126, 2000.
-
(2000)
Econometrica
, vol.68
, Issue.5
, pp. 1097-1126
-
-
White, H.1
-
23
-
-
21844472595
-
Data snooping, dredging and fishing: The dark side of data mining a sigkdd99 panel report
-
D. Jensen, "Data snooping, dredging and fishing: The dark side of data mining a sigkdd99 panel report, " ACM SIGKDD Explorations Newsletter, vol. 1, no. 2, pp. 52-54, 2000.
-
(2000)
ACM SIGKDD Explorations Newsletter
, vol.1
, Issue.2
, pp. 52-54
-
-
Jensen, D.1
-
24
-
-
0036643049
-
Model selection and error estimation
-
P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation, " Machine Learning, vol. 48, no. 1-3, pp. 85-113, 2002.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
25
-
-
79952972776
-
Data warehouses and data mining tools for the legal profession: Using information technology to raise the standard of practice
-
L. Roberge, S. Long, and D. Burnham, "Data warehouses and data mining tools for the legal profession: using information technology to raise the standard of practice, " Syracuse Law Review, vol. 52, pp. 1281-1292, 2002.
-
(2002)
Syracuse Law Review
, vol.52
, pp. 1281-1292
-
-
Roberge, L.1
Long, S.2
Burnham, D.3
-
27
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results, " The Journal of Machine Learning Research, vol. 3, pp. 463-482, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
29
-
-
84873465379
-
Pac-bayes bounds with data dependent priors
-
E. Parrado-Hernández, A. Ambroladze, J. Shawe-Taylor, and S. Sun, "Pac-bayes bounds with data dependent priors, " The Journal of Machine Learning Research, vol. 13, no. 1, pp. 3507-3531, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 3507-3531
-
-
Parrado-Hernández, E.1
Ambroladze, A.2
Shawe-Taylor, J.3
Sun, S.4
-
30
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
J. Langford, "Tutorial on practical prediction theory for classification, " Journal of machine learning research, vol. 6, no. 1, p. 273, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.6
, Issue.1
, pp. 273
-
-
Langford, J.1
-
31
-
-
0032594959
-
An overview of statistical learning theory
-
V. N. Vapnik, "An overview of statistical learning theory, " IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988-999, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
33
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
C. J. Clopper and E. S. Pearson, "The use of confidence or fiducial limits illustrated in the case of the binomial, " Biometrika, vol. 26, no. 4, pp. 404-413, 1934.
-
(1934)
Biometrika
, vol.26
, Issue.4
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
34
-
-
79961151398
-
Test error bounds for classifiers: A survey of old and new results
-
D. Anguita, L. Ghelardoni, A. Ghio, and S. Ridella, "Test error bounds for classifiers: A survey of old and new results, " in IEEE Symposium on Foundations of Computational Intelligence, 2011.
-
(2011)
IEEE Symposium on Foundations of Computational Intelligence
-
-
Anguita, D.1
Ghelardoni, L.2
Ghio, A.3
Ridella, S.4
-
36
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection, " Statistics Surveys, vol. 4, pp. 40-79, 2010.
-
(2010)
Statistics Surveys
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
37
-
-
0025507176
-
Neural network ensembles
-
L. K. Hansen and P. Salamon, "Neural network ensembles, " IEEE transactions on pattern analysis and machine intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
-
(1990)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
38
-
-
84923857557
-
A comprehensive evaluation of multicategory classification methods for microbiomic data
-
A. Statnikov, M. Henaff, V. Narendra, K. Konganti, Z. Li, L. Yang, Z. Pei, M. J. Blaser, C. F. Aliferis, and A. V. Alekseyenko, "A comprehensive evaluation of multicategory classification methods for microbiomic data, " Microbiome, vol. 1, no. 1, p. 11, 2013.
-
(2013)
Microbiome
, vol.1
, Issue.1
, pp. 11
-
-
Statnikov, A.1
Henaff, M.2
Narendra, V.3
Konganti, K.4
Li, Z.5
Yang, L.6
Pei, Z.7
Blaser, M.J.8
Aliferis, C.F.9
Alekseyenko, A.V.10
-
39
-
-
22544475586
-
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
A. Statnikov, I. Tsamardinos, and Y. Dosbayev, "GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data, " International Journal of Medical Informatics, vol. 74, no. 7-8, pp. 491-503, 2005.
-
(2005)
International Journal of Medical Informatics
, vol.74
, Issue.7-8
, pp. 491-503
-
-
Statnikov, A.1
Tsamardinos, I.2
Dosbayev, Y.3
-
40
-
-
33748684439
-
On the statistical assessment of classifiers using DNA microarray data
-
N. Ancona, R. Maglietta, A. Piepoli, A. D'Addabbo, R. Cotugno, M. Savino, S. Liuni, M. Carella, G. Pesole, and F. Perri, "On the statistical assessment of classifiers using DNA microarray data, " Bioinformatics, vol. 7, no. 1, pp. 387-399, 2006.
-
(2006)
Bioinformatics
, vol.7
, Issue.1
, pp. 387-399
-
-
Ancona, N.1
Maglietta, R.2
Piepoli, A.3
D'Addabbo, A.4
Cotugno, R.5
Savino, M.6
Liuni, S.7
Carella, M.8
Pesole, G.9
Perri, F.10
-
41
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, " National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6745-6767, 1999.
-
(1999)
National Academy of Sciences of the United States of America
, vol.96
, Issue.12
, pp. 6745-6767
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
MacK, D.6
Levine, A.7
-
42
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. Olson, J. Marks, and J. Nevins, "Predicting the clinical status of human breast cancer by using gene expression profiles, " National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11 462-11 490, 2001.
-
(2001)
National Academy of Sciences of the United States of America
, vol.98
, Issue.20
, pp. 11462-11490
-
-
West, M.1
Blanchette, C.2
Dressman, H.3
Huang, E.4
Ishida, S.5
Spang, R.6
Zuzan, H.7
Olson, J.8
Marks, J.9
Nevins, J.10
-
43
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, "Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, " Science, vol. 286, no. 5439, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
44
-
-
84869877246
-
Comparative data mining for microarrays: A case study based on multiple myeloma
-
D. Page, F. Zhan, J. Cussens, M. Waddell, J. Hardin, B. Barlogie, and J. Shaughnessy Jr, "Comparative data mining for microarrays: A case study based on multiple myeloma, " in International Conference on Intelligent Systems for Molecular Biology, 2002.
-
(2002)
International Conference on Intelligent Systems for Molecular Biology
-
-
Page, D.1
Zhan, F.2
Cussens, J.3
Waddell, M.4
Hardin, J.5
Barlogie, B.6
Shaughnessy, J.7
-
45
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
|