-
1
-
-
79955898882
-
Electrochemical energy storage for green grid
-
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu Electrochemical energy storage for green grid Chem. Rev. 111 2011 3577 3613 10.1021/cr100290v
-
(2011)
Chem. Rev.
, vol.111
, pp. 3577-3613
-
-
Yang, Z.1
Zhang, J.2
Kintner-Meyer, M.C.W.3
Lu, X.4
Choi, D.5
Lemmon, J.P.6
Liu, J.7
-
2
-
-
84877324000
-
Capital cost sensitivity analysis of an all-vanadium redox-flow battery
-
M. Zhang, M. Moore, J.S. Watson, T.A. Zawodzinski, and R.M. Counce Capital cost sensitivity analysis of an all-vanadium redox-flow battery J. Electrochem. Soc. 159 2012 A1183 A1188 10.1149/2.041208jes
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A1183-A1188
-
-
Zhang, M.1
Moore, M.2
Watson, J.S.3
Zawodzinski, T.A.4
Counce, R.M.5
-
3
-
-
84867390232
-
Progress in redox flow batteries, remaining challenges and their applications in energy storage
-
P. Leung, X. Li, C. Ponce de León, L. Berlouis, C.T.J. Low, and F.C. Walsh Progress in redox flow batteries, remaining challenges and their applications in energy storage RSC Adv. 2 2012 10125 10156 10.1039/c2ra21342g
-
(2012)
RSC Adv.
, vol.2
, pp. 10125-10156
-
-
Leung, P.1
Li, X.2
Ponce De León, C.3
Berlouis, L.4
Low, C.T.J.5
Walsh, F.C.6
-
4
-
-
79953653324
-
Ion exchange membranes for vanadium redox flow battery (VRB) applications
-
X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom Ion exchange membranes for vanadium redox flow battery (VRB) applications Energy Environ. Sci. 4 2011 1147 1160 10.1039/c0ee00770f
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1147-1160
-
-
Li, X.1
Zhang, H.2
Mai, Z.3
Zhang, H.4
Vankelecom, I.5
-
5
-
-
83155172384
-
Redox flow batteries: A review
-
A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, and Q. Liu Redox flow batteries: a review J. Appl. Electrochem 41 2011 1137 1164 10.1007/s10800-011-0348-2
-
(2011)
J. Appl. Electrochem
, vol.41
, pp. 1137-1164
-
-
Weber, A.Z.1
Mench, M.M.2
Meyers, J.P.3
Ross, P.N.4
Gostick, J.T.5
Liu, Q.6
-
6
-
-
84857923823
-
Dramatic performance gains in vanadium redox flow batteries through modified cell architecture
-
D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, and M.M. Mench Dramatic performance gains in vanadium redox flow batteries through modified cell architecture J. Power Sources 206 2012 450 453 10.1016/j.jpowsour.2011.12.026
-
(2012)
J. Power Sources
, vol.206
, pp. 450-453
-
-
Aaron, D.S.1
Liu, Q.2
Tang, Z.3
Grim, G.M.4
Papandrew, A.B.5
Turhan, A.6
Zawodzinski, T.A.7
Mench, M.M.8
-
7
-
-
84885640526
-
High Power Density Redox Flow Battery Cells
-
M.L. Perry, R.M. Darling, and R. Zaffou High Power Density Redox Flow Battery Cells ECS Trans. 53 2013 7 16 10.1149/05307.0007ecst
-
(2013)
ECS Trans.
, vol.53
, pp. 7-16
-
-
Perry, M.L.1
Darling, R.M.2
Zaffou, R.3
-
10
-
-
0006185749
-
Chemical modification of graphite electrode materials for vanadium redox flow battery application - Part II. Acid treatments
-
B. Sun, and M. Skyllas-Kazacos Chemical modification of graphite electrode materials for vanadium redox flow battery application - part II. Acid treatments Electrochim. Acta 37 1992 2459 2465 10.1016/0013-4686(92)87084-D
-
(1992)
Electrochim. Acta
, vol.37
, pp. 2459-2465
-
-
Sun, B.1
Skyllas-Kazacos, M.2
-
11
-
-
78649972194
-
Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery
-
L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery Carbon 48 2010 3079 3090 10.1016/j.carbon.2010.04.044
-
(2010)
Carbon
, vol.48
, pp. 3079-3090
-
-
Yue, L.1
Li, W.2
Sun, F.3
Zhao, L.4
Xing, L.5
-
12
-
-
84868246873
-
Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries
-
E. Agar, C. Dennison, K. Knehr, and E. Kumbur Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries J. Power Sources 225 2013 89 94 10.1016/j.jpowsour.2012.10.016
-
(2013)
J. Power Sources
, vol.225
, pp. 89-94
-
-
Agar, E.1
Dennison, C.2
Knehr, K.3
Kumbur, E.4
-
13
-
-
0026880177
-
Modification of graphite electrode materials for vanadium redox flow battery application - I. Thermal treatment
-
B. Sun, and M. Skyllas-Kazacos Modification of graphite electrode materials for vanadium redox flow battery application - I. Thermal treatment Electrochim. Acta 37 1992 1253 1260 10.1016/0013-4686(92)85064-R
-
(1992)
Electrochim. Acta
, vol.37
, pp. 1253-1260
-
-
Sun, B.1
Skyllas-Kazacos, M.2
-
14
-
-
84879299744
-
Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries
-
C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, and J.R. Morante Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries Appl. Energy 109 2013 344 351 10.1016/j.apenergy.2013.02.001
-
(2013)
Appl. Energy
, vol.109
, pp. 344-351
-
-
Flox, C.1
Skoumal, M.2
Rubio-Garcia, J.3
Andreu, T.4
Morante, J.R.5
-
15
-
-
84886266229
-
Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries
-
C.-N. Sun, F.M. Delnick, L. Baggetto, G.M. Veith, and T.A. Zawodzinski Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries J. Power Sources 248 2014 560 564 10.1016/j.jpowsour.2013.09.125
-
(2014)
J. Power Sources
, vol.248
, pp. 560-564
-
-
Sun, C.-N.1
Delnick, F.M.2
Baggetto, L.3
Veith, G.M.4
Zawodzinski, T.A.5
-
16
-
-
84890241171
-
-
John Wiley & Sons, Inc. Hoboken, NJ
-
M.M. Mench Fuel Cell Engines 2008 John Wiley & Sons, Inc. Hoboken, NJ 10.1002/9780470209769
-
(2008)
Fuel Cell Engines
-
-
Mench, M.M.1
-
18
-
-
0008439348
-
Changes in physico-chemical and morphological properties of carbon fiber by surface treatment
-
J.-S. Lee, and T.-J. Kang Changes in physico-chemical and morphological properties of carbon fiber by surface treatment Carbon 35 1997 209 216 10.1016/S0008-6223(96)00138-8
-
(1997)
Carbon
, vol.35
, pp. 209-216
-
-
Lee, J.-S.1
Kang, T.-J.2
-
19
-
-
0032800932
-
Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation
-
C.U. Pittman, W. Jiang, Z.R. Yue, and C.A. Leon y Leon Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation Carbon 37 1999 85 96 10.1016/S0008-6223(98)00190-0
-
(1999)
Carbon
, vol.37
, pp. 85-96
-
-
Pittman, C.U.1
Jiang, W.2
Yue, Z.R.3
Leon Leon, C.A.Y.4
-
20
-
-
84866666970
-
Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries
-
M.P. Manahan, Q.H. Liu, M.L. Gross, and M.M. Mench Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries J. Power Sources 222 2013 498 502 10.1016/j.jpowsour.2012.08.097
-
(2013)
J. Power Sources
, vol.222
, pp. 498-502
-
-
Manahan, M.P.1
Liu, Q.H.2
Gross, M.L.3
Mench, M.M.4
-
21
-
-
84874433357
-
Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application
-
W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, and X. Qiu Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application Electrochim. Acta 89 2013 429 435 10.1016/j.electacta.2012.11.072
-
(2013)
Electrochim. Acta
, vol.89
, pp. 429-435
-
-
Zhang, W.1
Xi, J.2
Li, Z.3
Zhou, H.4
Liu, L.5
Wu, Z.6
Qiu, X.7
-
22
-
-
84906327457
-
Carbon materials for the positive electrode in all-vanadium redox flow batteries
-
J. Melke, P. Jakes, J. Langner, L. Riekehr, U. Kunz, Z. Zhao-Karger, A. Nefedov, H. Sezen, C. Wöll, H. Ehrenberg, and C. Roth Carbon materials for the positive electrode in all-vanadium redox flow batteries Carbon 78 2014 220 230 10.1016/j.carbon.2014.06.075
-
(2014)
Carbon
, vol.78
, pp. 220-230
-
-
Melke, J.1
Jakes, P.2
Langner, J.3
Riekehr, L.4
Kunz, U.5
Zhao-Karger, Z.6
Nefedov, A.7
Sezen, H.8
Wöll, C.9
Ehrenberg, H.10
Roth, C.11
|