메뉴 건너뛰기




Volumn 17, Issue 6, 2015, Pages e154-

Characterizing the discussion of antibiotics in the Twittersphere: What is the bigger picture?

Author keywords

Internet; Neural network; Semi supervised learning; Social media; Twitter messaging; Web mining

Indexed keywords

ANTIINFECTIVE AGENT;

EID: 84936754361     PISSN: None     EISSN: 14388871     Source Type: Journal    
DOI: 10.2196/jmir.4220     Document Type: Article
Times cited : (29)

References (33)
  • 2
    • 84908053586 scopus 로고    scopus 로고
    • [accessed 2014-12-09] [WebCite Cache ID 6UwIGT5fI]
    • Social Networking Fact Sheet. 2014. URL: http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/ [accessed 2014-12-09] [WebCite Cache ID 6UwIGT5fI]
    • (2014) Social Networking Fact Sheet
  • 3
    • 84936785046 scopus 로고    scopus 로고
    • [accessed 2014-12-19] [WebCite Cache ID 6UwH6K5ro]
    • Smith B. The Beginner's Guide to Twitter. 2012. URL: http://mashable.com/2012/06/05/twitter-for-beginners/ [accessed 2014-12-19] [WebCite Cache ID 6UwH6K5ro]
    • (2012) The Beginner's Guide to Twitter
    • Smith, B.1
  • 4
    • 84873465507 scopus 로고    scopus 로고
    • [accessed 2014-12-19] [WebCite Cache ID 6UwI6V8rn]
    • Beevolve. An Exhaustive Study of Twitter Users Across the World. 2012. URL: http://www.beevolve.com/twitter-statistics/[accessed 2014-12-19] [WebCite Cache ID 6UwI6V8rn]
    • (2012) An Exhaustive Study of Twitter Users Across the World
  • 6
    • 84910151868 scopus 로고    scopus 로고
    • Tweet content related to sexually transmitted diseases: No joking matter
    • [Medline: 25289463]
    • Gabarron E, Serrano JA, Wynn R, Lau AYS. Tweet content related to sexually transmitted diseases: no joking matter. J Med Internet Res 2014;16(10):e228 [FREE Full text] [doi: 10.2196/jmir.3259] [Medline: 25289463]
    • (2014) J Med Internet Res , vol.16 , Issue.10 , pp. e228
    • Gabarron, E.1    Serrano, J.A.2    Wynn, R.3    Lau, A.Y.S.4
  • 7
    • 84910125211 scopus 로고    scopus 로고
    • Tweeting for and against public health policy: Response to the Chicago Department of Public Health's electronic cigarette Twitter campaign
    • [Medline: 25320863]
    • Harris JK, Moreland-Russell S, Choucair B, Mansour R, Staub M, Simmons K. Tweeting for and against public health policy: response to the Chicago Department of Public Health's electronic cigarette Twitter campaign. J Med Internet Res 2014;16(10):e238 [FREE Full text] [doi: 10.2196/jmir.3622] [Medline: 25320863]
    • (2014) J Med Internet Res , vol.16 , Issue.10 , pp. e238
    • Harris, J.K.1    Moreland-Russell, S.2    Choucair, B.3    Mansour, R.4    Staub, M.5    Simmons, K.6
  • 8
    • 84883360748 scopus 로고    scopus 로고
    • Using twitter to examine smoking behavior and perceptions of emerging tobacco products
    • [Medline: 23989137]
    • Mysl?n M, Zhu S, Chapman W, Conway M. Using twitter to examine smoking behavior and perceptions of emerging tobacco products. J Med Internet Res 2013;15(8):e174 [FREE Full text] [doi: 10.2196/jmir.2534] [Medline: 23989137]
    • (2013) J Med Internet Res , vol.15 , Issue.8 , pp. e174
    • Mysln, M.1    Zhu, S.2    Chapman, W.3    Conway, M.4
  • 9
    • 84905964881 scopus 로고    scopus 로고
    • What makes people talk about antibiotics on social media? A retrospective analysis of Twitter use
    • Sep, [Medline: 24862092]
    • Dyar OJ, Castro-Sánchez E, Holmes AH. What makes people talk about antibiotics on social media? A retrospective analysis of Twitter use. J Antimicrob Chemother 2014 Sep;69(9):2568-2572 [FREE Full text] [doi: 10.1093/jac/dku165] [Medline: 24862092]
    • (2014) J Antimicrob Chemother , vol.69 , Issue.9 , pp. 2568-2572
    • Dyar, O.J.1    Castro-Sánchez, E.2    Holmes, A.H.3
  • 10
    • 84878850555 scopus 로고    scopus 로고
    • Twitter as a source of vaccination information: Content drivers and what they are saying
    • Jun, [Medline: 23726548]
    • Love B, Himelboim I, Holton A, Stewart K. Twitter as a source of vaccination information: content drivers and what they are saying. Am J Infect Control 2013 Jun;41(6):568-570. [doi: 10.1016/j.ajic.2012.10.016] [Medline: 23726548]
    • (2013) Am J Infect Control , vol.41 , Issue.6 , pp. 568-570
    • Love, B.1    Himelboim, I.2    Holton, A.3    Stewart, K.4
  • 11
    • 77949891085 scopus 로고    scopus 로고
    • Dissemination of health information through social networks: Twitter and antibiotics
    • Apr, [Medline: 20347636]
    • Scanfeld D, Scanfeld V, Larson EL. Dissemination of health information through social networks: twitter and antibiotics. Am J Infect Control 2010 Apr;38(3):182-188 [FREE Full text] [doi: 10.1016/j.ajic.2009.11.004] [Medline: 20347636]
    • (2010) Am J Infect Control , vol.38 , Issue.3 , pp. 182-188
    • Scanfeld, D.1    Scanfeld, V.2    Larson, E.L.3
  • 12
    • 61349089280 scopus 로고    scopus 로고
    • Social internet sites as a source of public health information
    • Apr, vi, [Medline: 19254656]
    • Vance K, Howe W, Dellavalle RP. Social internet sites as a source of public health information. Dermatol Clin 2009 Apr;27(2):133-6, vi. [doi: 10.1016/j.det.2008.11.010] [Medline: 19254656]
    • (2009) Dermatol Clin , vol.27 , Issue.2 , pp. 133-6
    • Vance, K.1    Howe, W.2    Dellavalle, R.P.3
  • 13
    • 84883111635 scopus 로고    scopus 로고
    • OMG U got flu? Analysis of shared health messages for bio-surveillance
    • [Medline: 22166368]
    • Collier N, Son NT, Nguyen NM. OMG U got flu? Analysis of shared health messages for bio-surveillance. J Biomed Semantics 2011;2 Suppl 5:S9 [FREE Full text] [doi: 10.1186/2041-1480-2-S5-S9] [Medline: 22166368]
    • (2011) J Biomed Semantics , vol.2 , pp. S9
    • Collier, N.1    Son, N.T.2    Nguyen, N.M.3
  • 14
    • 84991769393 scopus 로고    scopus 로고
    • Lessons learned about public health from online crowd surveillance
    • Sep 10, [Medline: 25045598]
    • Hill S, Merchant R, Ungar L. Lessons learned about public health from online crowd surveillance. Big Data 2013 Sep 10;1(3):160-167 [FREE Full text] [doi: 10.1089/big.2013.0020] [Medline: 25045598]
    • (2013) Big Data , vol.1 , Issue.3 , pp. 160-167
    • Hill, S.1    Merchant, R.2    Ungar, L.3
  • 15
    • 72849140260 scopus 로고    scopus 로고
    • Google trends: A web-based tool for real-time surveillance of disease outbreaks
    • Nov 15, [Medline: 19845471]
    • Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009 Nov 15;49(10):1557-1564 [FREE Full text] [doi: 10.1086/630200] [Medline: 19845471]
    • (2009) Clin Infect Dis , vol.49 , Issue.10 , pp. 1557-1564
    • Carneiro, H.A.1    Mylonakis, E.2
  • 16
    • 77958047753 scopus 로고    scopus 로고
    • Flu detector - Tracking epidemics on Twitter
    • Balcázar JL, Bonchi F, Gionis A, Sebag M, editors, Berlin Heidelberg: Springer
    • Lampos V, Bie T, Cristianini N. Flu Detector - Tracking Epidemics on Twitter. In: Balcázar JL, Bonchi F, Gionis A, Sebag M, editors. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer; 2010:599-602.
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 599-602
    • Lampos, V.1    Bie, T.2    Cristianini, N.3
  • 18
    • 84875164559 scopus 로고    scopus 로고
    • The true cost of antimicrobial resistance
    • [Medline: 23479660]
    • Smith R, Coast J. The true cost of antimicrobial resistance. BMJ 2013;346:f1493. [Medline: 23479660]
    • (2013) BMJ , vol.346 , pp. f1493
    • Smith, R.1    Coast, J.2
  • 19
    • 84936785047 scopus 로고    scopus 로고
    • [accessed 2015-01-05] [WebCite Cache ID 6VMYYuCq6]
    • Apache Software Foundation. Welcome to Apache Flume. 2014. URL: http://flume.apache.org/ [accessed 2015-01-05] [WebCite Cache ID 6VMYYuCq6]
    • (2014) Welcome to Apache Flume
  • 20
    • 84907375665 scopus 로고    scopus 로고
    • [accessed 2015-01-10] [WebCite Cache ID 6VTmOWTYR]
    • Apache Software Foundation. Welcome to Apache Hadoop. 2014. URL: http://hadoop.apache.org/ [accessed 2015-01-10] [WebCite Cache ID 6VTmOWTYR]
    • (2014) Welcome to Apache Hadoop
  • 22
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Aug, [Medline: 12180402]
    • Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput 2002 Aug;14(8):1771-1800. [doi: 10.1162/089976602760128018] [Medline: 12180402]
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 23
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Jul 28, [Medline: 16873662]
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006 Jul 28;313(5786):504-507 [FREE Full text] [doi: 10.1126/science.1127647] [Medline: 16873662]
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
  • 25
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: Predicting protein disorder using boosting and deep networks
    • [Medline: 23497251]
    • Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics 2013;14:88 [FREE Full text] [doi: 10.1186/1471-2105-14-88] [Medline: 23497251]
    • (2013) BMC Bioinformatics , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 26
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • July 5-9, Helsinki, Finland
    • Collobert R, Weston J. A unified architecture for natural language processing: deep neural networks with multitask learning. 2008 Presented at: 25th International Conference on Machine learning; July 5-9, 2008; Helsinki, Finland. [doi: 10.1145/1390156.1390177]
    • (2008) 2008 Presented At: 25th International Conference on Machine Learning
    • Collobert, R.1    Weston, J.2
  • 27
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors, Berlin Heidelberg: Springer
    • Suk H, Shen D. Deep Learning-Based Feature Representation for AD/MCI Classification. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2013. Berlin Heidelberg: Springer; 2013:583-590.
    • (2013) Medical Image Computing and Computer Assisted Intervention - MICCAI 2013 , pp. 583-590
    • Suk, H.1    Shen, D.2
  • 29
    • 84897576138 scopus 로고    scopus 로고
    • Representation learning: A unified deep learning framework for automatic prostate MR segmentation
    • Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors, Berlin Heidelberg: Springer
    • Liao S, Gao Y, Oto A, Shen D. Representation Learning: A Unified Deep Learning Framework for Automatic Prostate MR Segmentation. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2013. Berlin Heidelberg: Springer; 2013:254-261.
    • (2013) Medical Image Computing and Computer Assisted Intervention - MICCAI 2013 , pp. 254-261
    • Liao, S.1    Gao, Y.2    Oto, A.3    Shen, D.4
  • 30
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • [Medline: 25333158]
    • Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 2014;17(Pt 1):520-527 [FREE Full text] [Medline: 25333158]
    • (2014) Med Image Comput Comput Assist Interv , vol.17 , pp. 520-527
    • Roth, H.R.1    Lu, L.2    Seff, A.3    Cherry, K.M.4    Hoffman, J.5    Wang, S.6
  • 31
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • May, [Medline: 25755127]
    • Nikfarjam A, Sarker A, O'Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015 May;22(3):671-681 [FREE Full text] [doi: 10.1093/jamia/ocu041] [Medline: 25755127]
    • (2015) J Am Med Inform Assoc , vol.22 , Issue.3 , pp. 671-681
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3    Ginn, R.4    Gonzalez, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.