-
2
-
-
84921720744
-
Modeling and Analyzing the Interaction between Network Rumors and Authoritative Information
-
Xia, L.; Jiang, G.; Song, Y.; Song, B. Modeling and Analyzing the Interaction between Network Rumors and Authoritative Information. Entropy 2015, 17, 471-482.
-
(2015)
Entropy
, vol.17
, pp. 471-482
-
-
Xia, L.1
Jiang, G.2
Song, Y.3
Song, B.4
-
3
-
-
84921751609
-
Self-Similarity in Population Dynamics: Surname Distributions and Genealogical Trees
-
Paolo, R. Self-Similarity in Population Dynamics: Surname Distributions and Genealogical Trees. Entropy 2015, 17, 425-437.
-
(2015)
Entropy
, vol.17
, pp. 425-437
-
-
Paolo, R.1
-
4
-
-
84921748037
-
An 18 Moments model for dense gases: Entropy and galilean relativity principles without expansions
-
Cristina, M.C.; Sebastiano, P. An 18 Moments model for dense gases: Entropy and galilean relativity principles without expansions. Entropy 2015, 17, 214-230.
-
(2015)
Entropy
, vol.17
, pp. 214-230
-
-
Cristina, M.C.1
Sebastiano, P.2
-
5
-
-
84930359870
-
Kinetic Theory Modeling and Efficient Numerical Simulation of Gene Regulatory Networks Based on Qualitative Descriptions
-
Francisco, C.; Morgan, M.; Olivier, R.; Amine, A.; Elias, C. Kinetic Theory Modeling and Efficient Numerical Simulation of Gene Regulatory Networks Based on Qualitative Descriptions. Entropy 2015, 17, 1896-1915.
-
(2015)
Entropy
, vol.17
, pp. 1896-1915
-
-
Francisco, C.1
Morgan, M.2
Olivier, R.3
Amine, A.4
Elias, C.5
-
6
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367-386.
-
(2002)
Fract. Calc. Appl. Anal
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
9
-
-
29944445628
-
A generalized groundwater flow equation using the concept of non-integer order derivatives
-
Cloot, A.; Botha, J.F. A generalized groundwater flow equation using the concept of non-integer order derivatives. Water SA 2006, 32, 55-78.
-
(2006)
Water SA
, vol.32
, pp. 55-78
-
-
Cloot, A.1
Botha, J.F.2
-
10
-
-
0034113992
-
The fractional-order governing equation of Lévy motion
-
Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. Res. 2000, 36, 1413-1423.
-
(2000)
Water Resour. Res
, vol.36
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
11
-
-
0023794199
-
An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry
-
Wheatcraft, W.; Tyler, S.W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 1988, 24, 566-578.
-
(1988)
Water Resour. Res
, vol.24
, pp. 566-578
-
-
Wheatcraft, W.1
Tyler, S.W.2
-
12
-
-
0034515585
-
Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux
-
Cushman, J.H.; Ginn, T.R. Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux. Water Resour. Res. 2000, 36, 3763-3766.
-
(2000)
Water Resour. Res
, vol.36
, pp. 3763-3766
-
-
Cushman, J.H.1
Ginn, T.R.2
-
13
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent-part II
-
Caputo, M. Linear models of dissipation whose Q is almost frequency independent-part II. Geophys. J. Int. 1967, 13, 529-539.
-
(1967)
Geophys. J. Int
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
14
-
-
84904131268
-
Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator
-
Wang, X.J.; Zhao, Y.; Cattani, C.; Yang, X.J. Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Math. Probl. Eng. 2014, 2014, doi:10.1155/2014/913202.
-
(2014)
Math. Probl. Eng
, vol.2014
-
-
Wang, X.J.1
Zhao, Y.2
Cattani, C.3
Yang, X.J.4
-
15
-
-
84915745515
-
Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems
-
Atangana, A.; Doungmo, G.E.F. Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems. Math. Probl. Eng. 2014, 2014, doi:10.1155/2014/107535.
-
(2014)
Math. Probl. Eng
, vol.2014
-
-
Atangana, A.1
Doungmo, G.E.F.2
-
16
-
-
84903906741
-
Conformable fractional Heat differential equation
-
Abu Hammad, M.; Khalil, R. Conformable fractional Heat differential equation. Int. J. Pure Appl. Math. 2014, 2, 215-221.
-
(2014)
Int. J. Pure Appl. Math
, vol.2
, pp. 215-221
-
-
Abu Hammad, M.1
Khalil, R.2
-
17
-
-
84961173701
-
Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
-
Yang, X.J.; Machado, J.T.; Hristov, J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 80, 1661-1664
-
(2015)
Nonlinear Dyn
, vol.80
, pp. 1661-1664
-
-
Yang, X.J.1
Machado, J.T.2
Hristov, J.3
-
18
-
-
84939986878
-
Local fractional similarity solution for the diffusion equation defined on Cantor sets
-
Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47, 54-60
-
(2015)
Appl. Math. Lett
, vol.47
, pp. 54-60
-
-
Yang, X.J.1
Baleanu, D.2
Srivastava, H.M.3
-
19
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696-1700.
-
(2013)
Phys. Lett. A
, vol.377
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
Baleanu, D.4
-
20
-
-
85051078999
-
A new Definition of Fractional Derivative without Singular Kernel
-
Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 73-85.
-
(2015)
Progr. Fract. Differ. Appl
, vol.1
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
21
-
-
85017665729
-
Properties of a New Fractional Derivative without Singular Kernel
-
Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87-92
-
(2015)
Progr. Fract. Differ. Appl
, vol.1
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
22
-
-
84934267826
-
Extension of the RLC electrical circuit to fractional derivative without singular kernel
-
Atangana, A.; Badr, S.T.A. Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1-6.
-
(2015)
Adv. Mech. Eng
, vol.7
, pp. 1-6
-
-
Atangana, A.1
Badr, S.T.A.2
-
23
-
-
0014748565
-
Initiation of slime mold aggregation viewed as instability
-
Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as instability. J. Theor. Biol. 1970, 26, 399-415.
-
(1970)
J. Theor. Biol
, vol.26
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
24
-
-
0043002129
-
Modeling chemosensory responses of swimming eukaryotes
-
Lapidus, R.; Levandowsky, M. Modeling chemosensory responses of swimming eukaryotes. Biol. Growth Spread 1979, 38, 388-396.
-
(1979)
Biol. Growth Spread
, vol.38
, pp. 388-396
-
-
Lapidus, R.1
Levandowsky, M.2
-
25
-
-
48449102329
-
Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations
-
Tindall, M.J.; Maini, P.K.; Porter, S.L.; Armitage, J.P. Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations. Appl. Numer. Math. 2009, 70, 1570-1607.
-
(2009)
Appl. Numer. Math
, vol.70
, pp. 1570-1607
-
-
Tindall, M.J.1
Maini, P.K.2
Porter, S.L.3
Armitage, J.P.4
-
26
-
-
84904907125
-
Modelling the Aggregation Process of Cellular Slime Mold by the Chemical Attraction
-
Atangana, A.; Vermeulen, P.D. Modelling the Aggregation Process of Cellular Slime Mold by the Chemical Attraction. BioMed. Res. Int. 2014, 2014, doi:10.1155/2014/815690.
-
(2014)
BioMed. Res. Int
, vol.2014
-
-
Atangana, A.1
Vermeulen, P.D.2
|