메뉴 건너뛰기




Volumn 17, Issue 6, 2015, Pages 4439-4453

Analysis of the Keller-Segel model with a fractional derivative without singular kernel

Author keywords

Caputo Fabrizio fractional derivative; Fixed point theorem; Keller Segel model; Special solution

Indexed keywords


EID: 84934324935     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e17064439     Document Type: Article
Times cited : (267)

References (26)
  • 2
    • 84921720744 scopus 로고    scopus 로고
    • Modeling and Analyzing the Interaction between Network Rumors and Authoritative Information
    • Xia, L.; Jiang, G.; Song, Y.; Song, B. Modeling and Analyzing the Interaction between Network Rumors and Authoritative Information. Entropy 2015, 17, 471-482.
    • (2015) Entropy , vol.17 , pp. 471-482
    • Xia, L.1    Jiang, G.2    Song, Y.3    Song, B.4
  • 3
    • 84921751609 scopus 로고    scopus 로고
    • Self-Similarity in Population Dynamics: Surname Distributions and Genealogical Trees
    • Paolo, R. Self-Similarity in Population Dynamics: Surname Distributions and Genealogical Trees. Entropy 2015, 17, 425-437.
    • (2015) Entropy , vol.17 , pp. 425-437
    • Paolo, R.1
  • 4
    • 84921748037 scopus 로고    scopus 로고
    • An 18 Moments model for dense gases: Entropy and galilean relativity principles without expansions
    • Cristina, M.C.; Sebastiano, P. An 18 Moments model for dense gases: Entropy and galilean relativity principles without expansions. Entropy 2015, 17, 214-230.
    • (2015) Entropy , vol.17 , pp. 214-230
    • Cristina, M.C.1    Sebastiano, P.2
  • 5
    • 84930359870 scopus 로고    scopus 로고
    • Kinetic Theory Modeling and Efficient Numerical Simulation of Gene Regulatory Networks Based on Qualitative Descriptions
    • Francisco, C.; Morgan, M.; Olivier, R.; Amine, A.; Elias, C. Kinetic Theory Modeling and Efficient Numerical Simulation of Gene Regulatory Networks Based on Qualitative Descriptions. Entropy 2015, 17, 1896-1915.
    • (2015) Entropy , vol.17 , pp. 1896-1915
    • Francisco, C.1    Morgan, M.2    Olivier, R.3    Amine, A.4    Elias, C.5
  • 6
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367-386.
    • (2002) Fract. Calc. Appl. Anal , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 9
    • 29944445628 scopus 로고    scopus 로고
    • A generalized groundwater flow equation using the concept of non-integer order derivatives
    • Cloot, A.; Botha, J.F. A generalized groundwater flow equation using the concept of non-integer order derivatives. Water SA 2006, 32, 55-78.
    • (2006) Water SA , vol.32 , pp. 55-78
    • Cloot, A.1    Botha, J.F.2
  • 10
  • 11
    • 0023794199 scopus 로고
    • An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry
    • Wheatcraft, W.; Tyler, S.W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 1988, 24, 566-578.
    • (1988) Water Resour. Res , vol.24 , pp. 566-578
    • Wheatcraft, W.1    Tyler, S.W.2
  • 12
    • 0034515585 scopus 로고    scopus 로고
    • Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux
    • Cushman, J.H.; Ginn, T.R. Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux. Water Resour. Res. 2000, 36, 3763-3766.
    • (2000) Water Resour. Res , vol.36 , pp. 3763-3766
    • Cushman, J.H.1    Ginn, T.R.2
  • 13
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent-part II
    • Caputo, M. Linear models of dissipation whose Q is almost frequency independent-part II. Geophys. J. Int. 1967, 13, 529-539.
    • (1967) Geophys. J. Int , vol.13 , pp. 529-539
    • Caputo, M.1
  • 14
    • 84904131268 scopus 로고    scopus 로고
    • Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator
    • Wang, X.J.; Zhao, Y.; Cattani, C.; Yang, X.J. Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Math. Probl. Eng. 2014, 2014, doi:10.1155/2014/913202.
    • (2014) Math. Probl. Eng , vol.2014
    • Wang, X.J.1    Zhao, Y.2    Cattani, C.3    Yang, X.J.4
  • 15
    • 84915745515 scopus 로고    scopus 로고
    • Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems
    • Atangana, A.; Doungmo, G.E.F. Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems. Math. Probl. Eng. 2014, 2014, doi:10.1155/2014/107535.
    • (2014) Math. Probl. Eng , vol.2014
    • Atangana, A.1    Doungmo, G.E.F.2
  • 16
    • 84903906741 scopus 로고    scopus 로고
    • Conformable fractional Heat differential equation
    • Abu Hammad, M.; Khalil, R. Conformable fractional Heat differential equation. Int. J. Pure Appl. Math. 2014, 2, 215-221.
    • (2014) Int. J. Pure Appl. Math , vol.2 , pp. 215-221
    • Abu Hammad, M.1    Khalil, R.2
  • 17
    • 84961173701 scopus 로고    scopus 로고
    • Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    • Yang, X.J.; Machado, J.T.; Hristov, J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015, 80, 1661-1664
    • (2015) Nonlinear Dyn , vol.80 , pp. 1661-1664
    • Yang, X.J.1    Machado, J.T.2    Hristov, J.3
  • 18
    • 84939986878 scopus 로고    scopus 로고
    • Local fractional similarity solution for the diffusion equation defined on Cantor sets
    • Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015, 47, 54-60
    • (2015) Appl. Math. Lett , vol.47 , pp. 54-60
    • Yang, X.J.1    Baleanu, D.2    Srivastava, H.M.3
  • 19
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696-1700.
    • (2013) Phys. Lett. A , vol.377 , pp. 1696-1700
    • Yang, X.J.1    Srivastava, H.M.2    He, J.H.3    Baleanu, D.4
  • 20
    • 85051078999 scopus 로고    scopus 로고
    • A new Definition of Fractional Derivative without Singular Kernel
    • Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 73-85.
    • (2015) Progr. Fract. Differ. Appl , vol.1 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 21
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a New Fractional Derivative without Singular Kernel
    • Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87-92
    • (2015) Progr. Fract. Differ. Appl , vol.1 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 22
    • 84934267826 scopus 로고    scopus 로고
    • Extension of the RLC electrical circuit to fractional derivative without singular kernel
    • Atangana, A.; Badr, S.T.A. Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1-6.
    • (2015) Adv. Mech. Eng , vol.7 , pp. 1-6
    • Atangana, A.1    Badr, S.T.A.2
  • 23
    • 0014748565 scopus 로고
    • Initiation of slime mold aggregation viewed as instability
    • Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as instability. J. Theor. Biol. 1970, 26, 399-415.
    • (1970) J. Theor. Biol , vol.26 , pp. 399-415
    • Keller, E.F.1    Segel, L.A.2
  • 24
    • 0043002129 scopus 로고
    • Modeling chemosensory responses of swimming eukaryotes
    • Lapidus, R.; Levandowsky, M. Modeling chemosensory responses of swimming eukaryotes. Biol. Growth Spread 1979, 38, 388-396.
    • (1979) Biol. Growth Spread , vol.38 , pp. 388-396
    • Lapidus, R.1    Levandowsky, M.2
  • 25
    • 48449102329 scopus 로고    scopus 로고
    • Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations
    • Tindall, M.J.; Maini, P.K.; Porter, S.L.; Armitage, J.P. Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations. Appl. Numer. Math. 2009, 70, 1570-1607.
    • (2009) Appl. Numer. Math , vol.70 , pp. 1570-1607
    • Tindall, M.J.1    Maini, P.K.2    Porter, S.L.3    Armitage, J.P.4
  • 26
    • 84904907125 scopus 로고    scopus 로고
    • Modelling the Aggregation Process of Cellular Slime Mold by the Chemical Attraction
    • Atangana, A.; Vermeulen, P.D. Modelling the Aggregation Process of Cellular Slime Mold by the Chemical Attraction. BioMed. Res. Int. 2014, 2014, doi:10.1155/2014/815690.
    • (2014) BioMed. Res. Int , vol.2014
    • Atangana, A.1    Vermeulen, P.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.