메뉴 건너뛰기




Volumn , Issue , 2015, Pages 206-211

Multi-way sentiment classification of Arabic reviews

Author keywords

Arabic Text; Bag Of Words; Decision Tree; K Nearest Neighbor; Multi Way Sentiment Analysis; Naive Bayes; Voting

Indexed keywords

DECISION TREES; LARGE DATASET; NEAREST NEIGHBOR SEARCH; REVIEWS; SENTIMENT ANALYSIS; STARS;

EID: 84933575950     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IACS.2015.7103228     Document Type: Conference Paper
Times cited : (46)

References (40)
  • 3
    • 84907321367 scopus 로고    scopus 로고
    • LABR: A large scale Arabic book reviews dataset
    • M. A. Aly and A. F. Atiya, "LABR: A large scale Arabic book reviews dataset." in ACL (2), 2013, pp. 494-498.
    • (2013) ACL , Issue.2 , pp. 494-498
    • Aly, M.A.1    Atiya, A.F.2
  • 5
    • 84922576257 scopus 로고    scopus 로고
    • Arabic opinion mining using combined classification approach
    • A. El-Halees, "Arabic opinion mining using combined classification approach," in ACIT, 2011.
    • (2011) ACIT
    • El-Halees, A.1
  • 6
    • 84933542068 scopus 로고    scopus 로고
    • Weakly supervised techniques for domain-independent sentiment classification
    • J. Read and J. Carroll, "Weakly supervised techniques for domain-independent sentiment classification," in TSA. ACM, 2009.
    • (2009) TSA. ACM
    • Read, J.1    Carroll, J.2
  • 7
    • 84922510891 scopus 로고    scopus 로고
    • Cross-lingual short-text document classification for facebook comments
    • M. Faqeeh et al., "Cross-lingual short-text document classification for facebook comments," in FiCloud, 2014.
    • (2014) FiCloud
    • Faqeeh, M.1
  • 8
    • 84933542070 scopus 로고    scopus 로고
    • Automatic Arabic text categorization: A comprehensive comparative study
    • I. Hmeidi et al., "Automatic Arabic text categorization: A comprehensive comparative study," Journal of Information Science, 2014.
    • (2014) Journal of Information Science
    • Hmeidi, I.1
  • 9
    • 84933542071 scopus 로고    scopus 로고
    • Scalable multi-label Arabic text classification
    • N. Ahmed et al., "Scalable multi-label Arabic text classification," in ICICS. IEEE, 2015.
    • (2015) ICICS. IEEE
    • Ahmed, N.1
  • 10
    • 74049091423 scopus 로고    scopus 로고
    • Multi-lingual sentiment analysis of financial news streams
    • K. Ahmad, D. Cheng, and Y. Almas, "Multi-lingual sentiment analysis of financial news streams," in Grid in Finance, 2006.
    • (2006) Grid in Finance
    • Ahmad, K.1    Cheng, D.2    Almas, Y.3
  • 11
    • 84922573153 scopus 로고    scopus 로고
    • A note on extracting sentiments in financial news in English, Arabic & URDU
    • Y. Almas and K. Ahmad, "A note on extracting sentiments in financial news in English, Arabic & URDU," in CAASL, 2007.
    • (2007) CAASL
    • Almas, Y.1    Ahmad, K.2
  • 12
  • 13
    • 79951749383 scopus 로고    scopus 로고
    • Sentence-level and document-level sentiment mining for Arabic texts
    • N. Farra, E. Challita, R. A. Assi, and H. Hajj, "Sentence-level and document-level sentiment mining for Arabic texts," in ICDMW, 2010.
    • (2010) ICDMW
    • Farra, N.1    Challita, E.2    Assi, R.A.3    Hajj, H.4
  • 14
    • 84978859851 scopus 로고    scopus 로고
    • Lexicon-based sentiment analysis of Arabic tweets
    • M. Al-Ayyoub, S. Bani Essa, and I. Alsmadi, "Lexicon-based sentiment analysis of Arabic tweets," IJSNM, 2014.
    • (2014) IJSNM
    • Al-Ayyoub, M.1    Bani Essa, S.2    Alsmadi, I.3
  • 16
    • 84922702567 scopus 로고    scopus 로고
    • Towards improving the lexicon-based approach for Arabic sentiment analysis
    • N. Abdulla et al., "Towards improving the lexicon-based approach for Arabic sentiment analysis," IJITWE, 2014.
    • (2014) IJITWE
    • Abdulla, N.1
  • 17
    • 84922573260 scopus 로고    scopus 로고
    • Arabic sentiment analysis: Corpus-based and lexicon-based
    • -, "Arabic sentiment analysis: Corpus-based and lexicon-based," in AEECT. IEEE, 2013.
    • (2013) AEECT. IEEE
    • Abdulla, N.1
  • 18
    • 84874735342 scopus 로고    scopus 로고
    • Classifying sentiment in Arabic social networks: Naive search versus naive bayes
    • M. M. Itani et al., "Classifying sentiment in Arabic social networks: Naive search versus naive bayes," in ACTEA, 2012.
    • (2012) ACTEA
    • Itani, M.M.1
  • 19
    • 84922552375 scopus 로고    scopus 로고
    • Automatic lexicon construction for Arabic sentiment analysis
    • N. Abdulla et al., "Automatic lexicon construction for Arabic sentiment analysis," in FiCloud, 2014.
    • (2014) FiCloud
    • Abdulla, N.1
  • 22
    • 84980368410 scopus 로고    scopus 로고
    • Awatif: A multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis
    • M. Abdul-Mageed and M. T. Diab, "Awatif: A multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis." in LREC, 2012, pp. 3907-3914.
    • (2012) LREC , pp. 3907-3914
    • Abdul-Mageed, M.1    Diab, M.T.2
  • 24
    • 84859045256 scopus 로고    scopus 로고
    • Subjectivity and sentiment analysis of modern standard Arabic
    • M. Abdul-Mageed, M. T. Diab, and M. Korayem, "Subjectivity and sentiment analysis of modern standard Arabic." in ACL, 2011.
    • (2011) ACL
    • Abdul-Mageed, M.1    Diab, M.T.2    Korayem, M.3
  • 26
    • 84880352387 scopus 로고    scopus 로고
    • SAMAR: A system for subjectivity and sentiment analysis of Arabic social media
    • M. Abdul-Mageed et al., "SAMAR: A system for subjectivity and sentiment analysis of Arabic social media," in WASSA, 2012.
    • (2012) WASSA
    • Abdul-Mageed, M.1
  • 27
    • 84866949698 scopus 로고    scopus 로고
    • Sentence-level Arabic sentiment analysis
    • A. Shoukry and A. Rafea, "Sentence-level Arabic sentiment analysis," in CTS, 2012.
    • (2012) CTS
    • Shoukry, A.1    Rafea, A.2
  • 28
    • 84894131371 scopus 로고    scopus 로고
    • An opinion analysis tool for colloquial and standard Arabic
    • M. Al-Kabi et al., "An opinion analysis tool for colloquial and standard Arabic," in ICICS, 2013.
    • (2013) ICICS
    • Al-Kabi, M.1
  • 29
    • 84881110252 scopus 로고    scopus 로고
    • Open issues in the sentiment analysis of Arabic social media: A case study
    • S. R. El-Beltagy and A. Ali, "Open issues in the sentiment analysis of Arabic social media: A case study," in IIT, 2013.
    • (2013) IIT
    • El-Beltagy, S.R.1    Ali, A.2
  • 30
    • 84922573156 scopus 로고    scopus 로고
    • An empirical study to address the problem of unbalanced data sets in sentiment classification
    • A. Mountassir, H. Benbrahim, and I. Berrada, "An empirical study to address the problem of unbalanced data sets in sentiment classification," in SMC. IEEE, 2012.
    • (2012) SMC. IEEE
    • Mountassir, A.1    Benbrahim, H.2    Berrada, I.3
  • 33
  • 34
    • 84988222638 scopus 로고    scopus 로고
    • Compression-based Arabic text classification
    • H. Ta'amneh et al., "Compression-based Arabic text classification," in ACS/IEEE AICCSA, 2014.
    • (2014) ACS/IEEE AICCSA
    • Ta'Amneh, H.1
  • 35
    • 0036995440 scopus 로고    scopus 로고
    • Improving stemming for Arabic information retrieval: Light stemming and co-occurrence analysis
    • L. S. Larkey, L. Ballesteros, and M. E. Connell, "Improving stemming for Arabic information retrieval: light stemming and co-occurrence analysis," in SIGIR. ACM, 2002.
    • (2002) SIGIR. ACM
    • Larkey, L.S.1    Ballesteros, L.2    Connell, M.E.3
  • 37
    • 84988259136 scopus 로고    scopus 로고
    • An extensive study of the bag-of-words approach to gender identification of Arabic articles
    • K. Alsmearat, M. Al-Ayyoub, and R. Al-Shalabi, "An extensive study of the bag-of-words approach to gender identification of Arabic articles," in ACS/IEEE AICCSA, 2014.
    • (2014) ACS/IEEE AICCSA
    • Alsmearat, K.1    Al-Ayyoub, M.2    Al-Shalabi, R.3
  • 38
    • 1942484786 scopus 로고    scopus 로고
    • Tackling the poor assumptions of naive bayes text classifiers
    • Washington DC
    • J. Rennie et al., "Tackling the poor assumptions of naive bayes text classifiers," in ICML, vol. 3. Washington DC), 2003, pp. 616-623.
    • (2003) ICML , vol.3 , pp. 616-623
    • Rennie, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.