메뉴 건너뛰기




Volumn 62, Issue 7, 2015, Pages 1827-1837

Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction

Author keywords

Covariance; electrocardiogram (ECG); K nearest neighbor (KNN); multilead ECG; multiscale eigenvalues; multiscale wavelet energy; myocardial infarction (MI); radial basis function (RBF); support vector machine (SVM)

Indexed keywords

CARDIOLOGY; COVARIANCE MATRIX; EIGENVALUES AND EIGENFUNCTIONS; ELECTROCARDIOGRAPHY; FUNCTIONS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; RADIAL BASIS FUNCTION NETWORKS; SIGNAL DETECTION; SUPPORT VECTOR MACHINES; WAVELET DECOMPOSITION;

EID: 84933056881     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2405134     Document Type: Article
Times cited : (267)

References (36)
  • 3
    • 0033851515 scopus 로고    scopus 로고
    • Myocardial infarction redefineda consensus document of the joint european society of cardiology/american college of cardiology committee for the redefinition of myocardial infarction: The joint European Society of Cardiology/American College of Cardiology Committee
    • E. Antman et al., "Myocardial infarction redefineda consensus document of the joint european society of cardiology/american college of cardiology committee for the redefinition of myocardial infarction: The joint European Society of Cardiology/American College of Cardiology Committee,"J. Am. College Cardiol., vol. 36, no. 3, pp. 959-969, 2000.
    • (2000) J. Am. College Cardiol. , vol.36 , Issue.3 , pp. 959-969
    • Antman, E.1
  • 4
    • 33344476045 scopus 로고    scopus 로고
    • The diagnostic and prognostic impact of the redefinition of acute myocardial infarction: Lessons from the global registry of acute coronary events (grace)
    • S. G. Goodman et al., "The diagnostic and prognostic impact of the redefinition of acute myocardial infarction: Lessons from the global registry of acute coronary events (grace)," Am. Heart J., vol. 151, no.3, pp.654-660, 2006.
    • (2006) Am. Heart J. , vol.151 , Issue.3 , pp. 654-660
    • Goodman, S.G.1
  • 5
    • 84867577224 scopus 로고    scopus 로고
    • Third universal definition of myocardial infarction
    • K. Thygesen et al., "Third universal definition of myocardial infarction,"Circulation, vol. 126, no. 16, pp. 2020-2035, 2012.
    • (2012) Circulation , vol.126 , Issue.16 , pp. 2020-2035
    • Thygesen, K.1
  • 6
    • 84867362492 scopus 로고    scopus 로고
    • Third universal definition of myocardial infarction
    • K. Thygesen et al., "Third universal definition of myocardial infarction,"J. Am. Coll. Cardiol., vol. 60, no. 16, pp. 1581-1598, 2012.
    • (2012) J. Am. Coll. Cardiol. , vol.60 , Issue.16 , pp. 1581-1598
    • Thygesen, K.1
  • 7
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • Jul.
    • P. D. Chazal et al., "Automatic classification of heartbeats using ECG morphology and heartbeat interval features," IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196-1206, Jul. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.7 , pp. 1196-1206
    • Chazal, P.D.1
  • 8
    • 33947319315 scopus 로고    scopus 로고
    • A rough-set-based inference engine for ECG classification
    • Dec.
    • S. Mitra et al., "A rough-set-based inference engine for ECG classification,"IEEE Trans. Instrum. Meas., vol. 55, no. 6, pp. 2198-2206, Dec. 2006.
    • (2006) IEEE Trans. Instrum. Meas. , vol.55 , Issue.6 , pp. 2198-2206
    • Mitra, S.1
  • 9
    • 84860260435 scopus 로고    scopus 로고
    • Detection and localization of myocardial infarction using k-nearest neighbor classifier
    • A. Muhammad et al., "Detection and localization of myocardial infarction using k-nearest neighbor classifier," J. Med. Syst., vol. 36, no. 1, pp. 279-289, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.1 , pp. 279-289
    • Muhammad, A.1
  • 10
    • 84870542273 scopus 로고    scopus 로고
    • ECG analysis using multiple instance learning for myocardial infarction detection
    • Dec.
    • L. Sun et al., "ECG analysis using multiple instance learning for myocardial infarction detection," IEEE Trans. Biomed. Eng., vol. 59, no. 12, pp. 3348-3356, Dec. 2012.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.12 , pp. 3348-3356
    • Sun, L.1
  • 11
    • 85066887954 scopus 로고    scopus 로고
    • Beat-to-beat quantification and analysis of ST displacement from Holter ECGs: A new approach to ischemia detection
    • F.Badilini et al., "Beat-to-beat quantification and analysis of ST displacement from Holter ECGs: A new approach to ischemia detection," in Proc. Comput. Cardiol., 1992, pp. 179-182.
    • Proc. Comput. Cardiol., 1992 , pp. 179-182
    • Badilini, F.1
  • 12
    • 78649316794 scopus 로고    scopus 로고
    • Analysis of myocardial infarction using discrete wavelet transform
    • E. S. Jayachandran et al., "Analysis of myocardial infarction using discrete wavelet transform," J. Med. Syst., vol. 34, no. 6, pp. 985-992, 2010.
    • (2010) J. Med. Syst. , vol.34 , Issue.6 , pp. 985-992
    • Jayachandran, E.S.1
  • 13
    • 0038581686 scopus 로고    scopus 로고
    • Automated methods for ischemia detection in long duration ECGs
    • Jun.
    • C.Papaloukas et al., "Automated methods for ischemia detection in long duration ECGs," Cardiovascular Review Rep., vol. 24, no.6, pp.313-319, Jun. 2003.
    • (2003) Cardiovascular Review Rep. , vol.24 , Issue.6 , pp. 313-319
    • Papaloukas, C.1
  • 14
    • 0345105562 scopus 로고    scopus 로고
    • Neural network versus electrocardiographer and conventional computer criteria in diagnosing anterior infarct from the ECG
    • M. R. S. Reddy et al., "Neural network versus electrocardiographer and conventional computer criteria in diagnosing anterior infarct from the ECG," in Proc. Comput. Cardiol., Oct. 1992, pp. 667-670.
    • Proc. Comput. Cardiol., Oct. 1992 , pp. 667-670
    • Reddy, M.R.S.1
  • 15
    • 0034478015 scopus 로고    scopus 로고
    • An automated ECG classification system based on a neuro-fuzzy system
    • H. L. Lu et al., "An automated ECG classification system based on a neuro-fuzzy system," in Proc. Proc. Comput. Cardiol., 2000, pp. 387-390.
    • Proc. Proc. Comput. Cardiol., 2000 , pp. 387-390
    • Lu, H.L.1
  • 16
    • 0030823688 scopus 로고    scopus 로고
    • Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks
    • B. Heden et al., "Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks," Circulation, vol. 96, pp. 1798-1802, 1997.
    • (1997) Circulation , vol.96 , pp. 1798-1802
    • Heden, B.1
  • 17
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B. R. Bakshi, "Multiscale PCA with application to multivariate statistical process monitoring," AIChE J., vol. 44, pp. 1596-1610, 1998.
    • (1998) AIChE J. , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 18
    • 84863524972 scopus 로고    scopus 로고
    • Multichannel ECG data compression based on multiscale principal component analysis
    • Jul.
    • L. N. Sharma et al., "Multichannel ECG data compression based on multiscale principal component analysis," IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 4, pp. 730-736, Jul. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.4 , pp. 730-736
    • Sharma, L.N.1
  • 19
    • 50149114267 scopus 로고    scopus 로고
    • ABC of Clinical Electrocardiography
    • New York, NY, USA: Wiley
    • F. Morris et al., ABC of Clinical Electrocardiography (ser. ABC Series). New York, NY, USA: Wiley, 2003.
    • (2003) ABC Series
    • Morris, F.1
  • 20
    • 1542345144 scopus 로고    scopus 로고
    • Biomedical Signal Analysis: A Case-Study Approach
    • Piscataway, NJ, USA: IEEE Press
    • R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (ser. IEEE Press Series in Biomedical Engineering). Piscataway, NJ, USA: IEEE Press, 2002.
    • (2002) IEEE Press Series in Biomedical Engineering
    • Rangayyan, R.M.1
  • 21
    • 84874114820 scopus 로고    scopus 로고
    • Kurtosis-based noise estimation and multiscale energy to denoise ECG signal
    • L. N. Sharma et al., "Kurtosis-based noise estimation and multiscale energy to denoise ECG signal," Signal, Image Video Process., pp. 1-11, 2011.
    • (2011) Signal, Image Video Process. , pp. 1-11
    • Sharma, L.N.1
  • 22
    • 84901253139 scopus 로고    scopus 로고
    • Ventricular fibrillation and tachycardia classification using a machine learning approach
    • Jun.
    • L. Qiao et al., "Ventricular fibrillation and tachycardia classification using a machine learning approach," IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1607-1613, Jun. 2014.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.6 , pp. 1607-1613
    • Qiao, L.1
  • 23
    • 79951602695 scopus 로고    scopus 로고
    • ECG signal denoising using higher order statistics in wavelet subbands
    • L. N. Sharma et al., "ECG signal denoising using higher order statistics in wavelet subbands," Biomed. Signal Process. Control, vol. 5, no. 3, pp. 214-222, 2010.
    • (2010) Biomed. Signal Process. Control , vol.5 , Issue.3 , pp. 214-222
    • Sharma, L.N.1
  • 24
    • 50649108173 scopus 로고    scopus 로고
    • The PTB diagnostic ECG database
    • Available
    • M. Oeff et al. (2012). "The PTB diagnostic ECG database," Nat. Metrol. Inst. Germany. [Online]. Available: http://www.physionet.org/physiobank/database/ptbdb
    • (2012) Nat. Metrol. Inst. Germany. [Online]
    • Oeff, M.1
  • 25
    • 0037340466 scopus 로고    scopus 로고
    • A dynamical model for generating synthetic electrocardiogram signals
    • Mar.
    • P. E. McSharry et al., "A dynamical model for generating synthetic electrocardiogram signals," IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp. 289-294, Mar. 2003.
    • (2003) IEEE Trans. Biomed. Eng. , vol.50 , Issue.3 , pp. 289-294
    • McSharry, P.E.1
  • 27
    • 38649113208 scopus 로고    scopus 로고
    • Application of wrapper approach and composite classifier to the stock trend prediction
    • C.-J. Huang et al., "Application of wrapper approach and composite classifier to the stock trend prediction," Expert Syst. Appl., vol. 34, no. 4, pp. 2870-2878, 2008.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.4 , pp. 2870-2878
    • Huang, C.-J.1
  • 28
    • 67749108627 scopus 로고    scopus 로고
    • Heartbeat time series classification with support vector machines
    • Jul.
    • A. Kampouraki et al., "Heartbeat time series classification with support vector machines," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 4, pp. 512-518, Jul. 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.4 , pp. 512-518
    • Kampouraki, A.1
  • 29
    • 34249753618 scopus 로고
    • Support vector machine
    • C. Cortes and V. Vapnik, "Support vector machine," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 32
    • 0003074296 scopus 로고    scopus 로고
    • Support vector machines
    • Jul./Aug.
    • M. A. Hearst et al., "Support vector machines," IEEE Trans. Intell. Syst. Appl., vol. 13, no. 4, pp. 18-28, Jul./Aug. 1998.
    • (1998) IEEE Trans. Intell. Syst. Appl. , vol.13 , Issue.4 , pp. 18-28
    • Hearst, M.A.1
  • 35
    • 84893974653 scopus 로고    scopus 로고
    • Artificial intelligence-based classification of breast cancer using cellular images
    • R. K. Tripathy et al., "Artificial intelligence-based classification of breast cancer using cellular images," RSC Adv., vol. 4, no. 18, pp. 9349-9355, 2014.
    • (2014) RSC Adv. , vol.4 , Issue.18 , pp. 9349-9355
    • Tripathy, R.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.