메뉴 건너뛰기




Volumn 280, Issue , 2015, Pages 643-657

Chemolithotrophic denitrification in biofilm reactors

Author keywords

Biofilm; Biofilm electrode reactor; Chemolithotrophic denitrification; Fluidized bed reactor; Membrane biofilm reactor; Packed bed reactor

Indexed keywords

ARSENIC COMPOUNDS; BIOFILMS; BIOFOULING; BIOREACTORS; CHEMICAL REACTORS; DENITRIFICATION; ELECTRODES; FLUID CATALYTIC CRACKING; FLUIDIZATION; HYDROGEN; HYDROGEN INORGANIC COMPOUNDS; INORGANIC COMPOUNDS; NITRATES; PACKED BEDS; SULFUR;

EID: 84932636341     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2015.05.131     Document Type: Review
Times cited : (177)

References (130)
  • 1
    • 0034302218 scopus 로고    scopus 로고
    • Biological denitrification of groundwater
    • Soares M. Biological denitrification of groundwater. Water Air Soil Pollut. 2000, 123:183-193.
    • (2000) Water Air Soil Pollut. , vol.123 , pp. 183-193
    • Soares, M.1
  • 2
    • 53149117415 scopus 로고    scopus 로고
    • Nitrate attenuation in groundwater: a review of biogeochemical controlling processes
    • Rivett M., Buss S., Morgan P., Smith J., Bemment C. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 2008, 42:4215-4232.
    • (2008) Water Res. , vol.42 , pp. 4215-4232
    • Rivett, M.1    Buss, S.2    Morgan, P.3    Smith, J.4    Bemment, C.5
  • 3
    • 0003896605 scopus 로고    scopus 로고
    • Groundwater Quality and Quantity in Europe
    • Environmental Assessment Report No. 3, European Environment Agency, Copenhagen
    • European Environment Agency (EEA), Groundwater Quality and Quantity in Europe. Environmental Assessment Report No. 3, European Environment Agency, Copenhagen, 2000.
    • (2000)
  • 4
    • 0033728768 scopus 로고    scopus 로고
    • Biological removal of ammonia and nitrate from simulated mine and mill effluents
    • Koren D., Gould W., Bedard P. Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy 2000, 56:127-144.
    • (2000) Hydrometallurgy , vol.56 , pp. 127-144
    • Koren, D.1    Gould, W.2    Bedard, P.3
  • 7
    • 0028160721 scopus 로고
    • Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination
    • Smith R., Ceazan M., Brooks M. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 1994, 60:1949-1955.
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 1949-1955
    • Smith, R.1    Ceazan, M.2    Brooks, M.3
  • 8
    • 0029898080 scopus 로고    scopus 로고
    • Anaerobic, nitrate-dependent microbial oxidation of ferrous iron
    • Straub K., Benz M., Schink B., Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 1996, 62:1458-1460.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 1458-1460
    • Straub, K.1    Benz, M.2    Schink, B.3    Widdel, F.4
  • 9
    • 78149414208 scopus 로고    scopus 로고
    • Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications
    • Shao M., Zhang T., Fang H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol. 2010, 88:1027-1042.
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 1027-1042
    • Shao, M.1    Zhang, T.2    Fang, H.3
  • 10
    • 0033771449 scopus 로고    scopus 로고
    • The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer
    • Devlin J., Eedy R., Butler B. The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. J. Contam. Hydrol. 2000, 46:81-97.
    • (2000) J. Contam. Hydrol. , vol.46 , pp. 81-97
    • Devlin, J.1    Eedy, R.2    Butler, B.3
  • 12
    • 64549113693 scopus 로고    scopus 로고
    • Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors
    • Vasiliadou I., Karanasios K., Pavlou S., Vayenas D. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors. J. Hazard. Mater. 2009, 165:812-824.
    • (2009) J. Hazard. Mater. , vol.165 , pp. 812-824
    • Vasiliadou, I.1    Karanasios, K.2    Pavlou, S.3    Vayenas, D.4
  • 13
    • 33644824784 scopus 로고    scopus 로고
    • Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions
    • Rezania B., Cicek N., Oleszkiewicz J. Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions. Biotechnol. Bioeng. 2005, 92:900-906.
    • (2005) Biotechnol. Bioeng. , vol.92 , pp. 900-906
    • Rezania, B.1    Cicek, N.2    Oleszkiewicz, J.3
  • 14
    • 57649202570 scopus 로고    scopus 로고
    • Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of hydrogenotrophic denitrifying bacteria
    • Ghafari S., Hasan M., Aroua M. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of hydrogenotrophic denitrifying bacteria. J. Hazard. Mater. 2009, 162:1507-1513.
    • (2009) J. Hazard. Mater. , vol.162 , pp. 1507-1513
    • Ghafari, S.1    Hasan, M.2    Aroua, M.3
  • 15
    • 77951249452 scopus 로고    scopus 로고
    • A kinetic study of autohydrogenotrophic denitrification at the optimum pH and sodium bicarbonate dose
    • Ghafari S., Hasan M., Aroua M. A kinetic study of autohydrogenotrophic denitrification at the optimum pH and sodium bicarbonate dose. Bioresour. Technol. 2010, 101:2236-2242.
    • (2010) Bioresour. Technol. , vol.101 , pp. 2236-2242
    • Ghafari, S.1    Hasan, M.2    Aroua, M.3
  • 16
    • 0032720524 scopus 로고    scopus 로고
    • Nitrate removal with sulfur-limestone autotrophic denitrification processes
    • Flere J., Zhang T. Nitrate removal with sulfur-limestone autotrophic denitrification processes. J. Environ. Eng. 1999, 8:721-729.
    • (1999) J. Environ. Eng. , vol.8 , pp. 721-729
    • Flere, J.1    Zhang, T.2
  • 17
    • 3042728742 scopus 로고    scopus 로고
    • Performance of a sulphur-utilizing fluidized bed reactor for post-denitrification
    • Kim H., Lee I., Bae J. Performance of a sulphur-utilizing fluidized bed reactor for post-denitrification. Process Biochem. 2004, 39:1591-1597.
    • (2004) Process Biochem. , vol.39 , pp. 1591-1597
    • Kim, H.1    Lee, I.2    Bae, J.3
  • 20
    • 0026223346 scopus 로고
    • Review of natural and artificial denitrification of groundwater
    • Hiscock K., Lloyd J., Lerner D. Review of natural and artificial denitrification of groundwater. Water Res. 1991, 25:1099-1111.
    • (1991) Water Res. , vol.25 , pp. 1099-1111
    • Hiscock, K.1    Lloyd, J.2    Lerner, D.3
  • 21
    • 0017939497 scopus 로고
    • The use of sulfur and sulfide in packed bed reactors for autotrophic denitrification
    • Driscoll C., Bisogni J. The use of sulfur and sulfide in packed bed reactors for autotrophic denitrification. J. Water Pollut. Control Fed. 1978, 50:569-577.
    • (1978) J. Water Pollut. Control Fed. , vol.50 , pp. 569-577
    • Driscoll, C.1    Bisogni, J.2
  • 22
    • 0033060192 scopus 로고    scopus 로고
    • Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities
    • Kuai L., Verstraete W. Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities. Environ. Technol. 1999, 20:201-209.
    • (1999) Environ. Technol. , vol.20 , pp. 201-209
    • Kuai, L.1    Verstraete, W.2
  • 23
    • 2442547215 scopus 로고    scopus 로고
    • Removal of high NO3- concentrations in saline water through autotrophic denitrification by the bacterium Thiobacillus denitrificans strain MP
    • Gu J., Qiu W., Koenig A., Fan Y., Choi E., Yun Z. Removal of high NO3- concentrations in saline water through autotrophic denitrification by the bacterium Thiobacillus denitrificans strain MP. Water Sci. Technol. 2004, 49:105-112.
    • (2004) Water Sci. Technol. , vol.49 , pp. 105-112
    • Gu, J.1    Qiu, W.2    Koenig, A.3    Fan, Y.4    Choi, E.5    Yun, Z.6
  • 24
    • 9444257489 scopus 로고    scopus 로고
    • Nitrate removal from saline water using autotrophic denitrification by the bacterium Thiobacillus denitrificans MP-1
    • Zhao Z., Qiu W., Koenig A., Fan X., Gu J. Nitrate removal from saline water using autotrophic denitrification by the bacterium Thiobacillus denitrificans MP-1. Environ. Technol. 2004, 25:1201-1210.
    • (2004) Environ. Technol. , vol.25 , pp. 1201-1210
    • Zhao, Z.1    Qiu, W.2    Koenig, A.3    Fan, X.4    Gu, J.5
  • 25
    • 83455163340 scopus 로고    scopus 로고
    • Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone
    • Zhou W., Sun Y., Wu B., Zhang Y., Huang M., Miyanaga T., Zhang Z. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J. Environ. Sci. 2011, 23:1761-1769.
    • (2011) J. Environ. Sci. , vol.23 , pp. 1761-1769
    • Zhou, W.1    Sun, Y.2    Wu, B.3    Zhang, Y.4    Huang, M.5    Miyanaga, T.6    Zhang, Z.7
  • 26
    • 0032785906 scopus 로고    scopus 로고
    • In situ septic tank effluent denitrification using a sulfur/limestone process
    • Zhang T., Shan J. In situ septic tank effluent denitrification using a sulfur/limestone process. Water Environ. Res. 1999, 71:1283-1291.
    • (1999) Water Environ. Res. , vol.71 , pp. 1283-1291
    • Zhang, T.1    Shan, J.2
  • 27
    • 0026694079 scopus 로고
    • Biological nitrate removal from ground water by sulphur/limestone denitrification
    • van der Hoek J., Kappelhof J., Hijnen W. Biological nitrate removal from ground water by sulphur/limestone denitrification. J. Chem. Technol. Biotechnol. 1992, 54:197-200.
    • (1992) J. Chem. Technol. Biotechnol. , vol.54 , pp. 197-200
    • van der Hoek, J.1    Kappelhof, J.2    Hijnen, W.3
  • 28
    • 0027039356 scopus 로고
    • Optimization of the sulphur-limestone filtration process for nitrate removal from groundwater
    • van der Hoek J., Hijnen W., van Bennekom C., Mijnarends B. Optimization of the sulphur-limestone filtration process for nitrate removal from groundwater. J. Water Supply Res. T. 1992, 41:209-218.
    • (1992) J. Water Supply Res. T. , vol.41 , pp. 209-218
    • van der Hoek, J.1    Hijnen, W.2    van Bennekom, C.3    Mijnarends, B.4
  • 30
    • 0036009061 scopus 로고    scopus 로고
    • Denitrification of high NO3--N containing wastewater using elemental sulfur; nitrogen loading rate and N2O production
    • Park J., Shin H., Lee I., Bae J. Denitrification of high NO3--N containing wastewater using elemental sulfur; nitrogen loading rate and N2O production. Environ. Technol. 2002, 23:53-65.
    • (2002) Environ. Technol. , vol.23 , pp. 53-65
    • Park, J.1    Shin, H.2    Lee, I.3    Bae, J.4
  • 31
    • 0036182167 scopus 로고    scopus 로고
    • Denitrification of groundwater with elemental sulfur
    • Soares M. Denitrification of groundwater with elemental sulfur. Water Res. 2002, 36:1392-1395.
    • (2002) Water Res. , vol.36 , pp. 1392-1395
    • Soares, M.1
  • 32
    • 0034949941 scopus 로고    scopus 로고
    • Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification
    • Lee D., Lee I., Choi Y., Bae J. Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification. Process Biochem. 2001, 36:1215-1224.
    • (2001) Process Biochem. , vol.36 , pp. 1215-1224
    • Lee, D.1    Lee, I.2    Choi, Y.3    Bae, J.4
  • 34
    • 78650846516 scopus 로고    scopus 로고
    • Sulfate-reducing bacteria in a denitrification reactor packed with wood as a carbon source
    • Yamashita T., Yamamoto-Ikemoto R., Zhu J. Sulfate-reducing bacteria in a denitrification reactor packed with wood as a carbon source. Bioresour. Technol. 2011, 102:2235-2241.
    • (2011) Bioresour. Technol. , vol.102 , pp. 2235-2241
    • Yamashita, T.1    Yamamoto-Ikemoto, R.2    Zhu, J.3
  • 35
    • 50449087886 scopus 로고    scopus 로고
    • Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process
    • Osaka T., Shirotani K., Yoshie S., Tsuneda S. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res. 2008, 42:3709-3718.
    • (2008) Water Res. , vol.42 , pp. 3709-3718
    • Osaka, T.1    Shirotani, K.2    Yoshie, S.3    Tsuneda, S.4
  • 36
    • 84883816218 scopus 로고    scopus 로고
    • Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process
    • Sahinkaya E., Kilic A., Calimlioglu B., Toker Y. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process. J. Hazard. Mater. 2013, 262:234-239.
    • (2013) J. Hazard. Mater. , vol.262 , pp. 234-239
    • Sahinkaya, E.1    Kilic, A.2    Calimlioglu, B.3    Toker, Y.4
  • 37
    • 84891356469 scopus 로고    scopus 로고
    • Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction
    • Sahinkaya E., Kilic A. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res. 2014, 50:278-286.
    • (2014) Water Res. , vol.50 , pp. 278-286
    • Sahinkaya, E.1    Kilic, A.2
  • 38
    • 67649813446 scopus 로고    scopus 로고
    • Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor
    • Lu C., Gu P., He P., Zhang G., Song C. Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor. J. Hazard. Mater. 2009, 168:1581-1589.
    • (2009) J. Hazard. Mater. , vol.168 , pp. 1581-1589
    • Lu, C.1    Gu, P.2    He, P.3    Zhang, G.4    Song, C.5
  • 39
    • 0035255131 scopus 로고    scopus 로고
    • Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system
    • Szekeres S., Kiss I., Bejerano T., Soares M. Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system. Water Res. 2001, 35:715-719.
    • (2001) Water Res. , vol.35 , pp. 715-719
    • Szekeres, S.1    Kiss, I.2    Bejerano, T.3    Soares, M.4
  • 40
    • 0036755762 scopus 로고    scopus 로고
    • Microbial population in a hydrogen-dependent denitrification reactor
    • Szekeres S., Kiss I., Kalman M., Soares M. Microbial population in a hydrogen-dependent denitrification reactor. Water Res. 2002, 36:4088-4094.
    • (2002) Water Res. , vol.36 , pp. 4088-4094
    • Szekeres, S.1    Kiss, I.2    Kalman, M.3    Soares, M.4
  • 41
    • 80054905645 scopus 로고    scopus 로고
    • Potable water hydrogenotrophic denitrification in packed-bed bioreactors coupled with a solar-electrolysis hydrogen production system
    • Karanasios K., Michailidis M., Vasiliadou I., Pavlou S., Vayenas D. Potable water hydrogenotrophic denitrification in packed-bed bioreactors coupled with a solar-electrolysis hydrogen production system. Desalin. Water Treat. 2011, 33:86-96.
    • (2011) Desalin. Water Treat. , vol.33 , pp. 86-96
    • Karanasios, K.1    Michailidis, M.2    Vasiliadou, I.3    Pavlou, S.4    Vayenas, D.5
  • 42
    • 20444371509 scopus 로고    scopus 로고
    • Small-scale, hydrogen oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water
    • Smith R., Buckwalter S., Repert D., Miller D. Small-scale, hydrogen oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Res. 2005, 39:2014-2023.
    • (2005) Water Res. , vol.39 , pp. 2014-2023
    • Smith, R.1    Buckwalter, S.2    Repert, D.3    Miller, D.4
  • 43
    • 28444434156 scopus 로고    scopus 로고
    • Removal of nitrate in aquaria by means of electrochemically generated hydrogen gas as electron donor for biological denitrification
    • Grommen R., Verhaege M., Verstraete W. Removal of nitrate in aquaria by means of electrochemically generated hydrogen gas as electron donor for biological denitrification. Aquacult. Eng. 2006, 34:33-39.
    • (2006) Aquacult. Eng. , vol.34 , pp. 33-39
    • Grommen, R.1    Verhaege, M.2    Verstraete, W.3
  • 44
    • 67349132464 scopus 로고    scopus 로고
    • Autotrophic denitrification using hydrogen generated from metallic iron corrosion
    • Sunger N., Bose P. Autotrophic denitrification using hydrogen generated from metallic iron corrosion. Bioresour. Technol. 2009, 100:4077-4082.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4077-4082
    • Sunger, N.1    Bose, P.2
  • 45
    • 77956469718 scopus 로고    scopus 로고
    • Nitrate removal from drinking water in a packed-bed bioreactor coupled by a methanol-based electrochemical gas generator
    • Vagheei R., Ganjidoust H., Azimi A., Ayati B. Nitrate removal from drinking water in a packed-bed bioreactor coupled by a methanol-based electrochemical gas generator. Environ. Prog. Sust. Energy 2010, 29:278-285.
    • (2010) Environ. Prog. Sust. Energy , vol.29 , pp. 278-285
    • Vagheei, R.1    Ganjidoust, H.2    Azimi, A.3    Ayati, B.4
  • 46
    • 84904011593 scopus 로고    scopus 로고
    • Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor
    • Chen D., Yang K., Wang H., Lv B. Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Sci. Technol. 2014, 69:2417-2422.
    • (2014) Water Sci. Technol. , vol.69 , pp. 2417-2422
    • Chen, D.1    Yang, K.2    Wang, H.3    Lv, B.4
  • 47
    • 77049112473 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio
    • Lee J., Lee K., Park K., Maeng S. Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio. Bioresour. Technol. 2010, 101:3940-3946.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3940-3946
    • Lee, J.1    Lee, K.2    Park, K.3    Maeng, S.4
  • 49
    • 0037385318 scopus 로고    scopus 로고
    • Nitrate removal in zero-valent iron packed columns
    • Westerhoff P., James J. Nitrate removal in zero-valent iron packed columns. Water Res. 2003, 37:1818-1830.
    • (2003) Water Res. , vol.37 , pp. 1818-1830
    • Westerhoff, P.1    James, J.2
  • 50
    • 23144458727 scopus 로고    scopus 로고
    • Zero-valent iron-assisted autotrophic denitrification
    • Biswas S., Bose P. Zero-valent iron-assisted autotrophic denitrification. J. Environ. Eng. 2005, 131:1212-1220.
    • (2005) J. Environ. Eng. , vol.131 , pp. 1212-1220
    • Biswas, S.1    Bose, P.2
  • 51
    • 0028193680 scopus 로고
    • Evaluation of free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrate
    • Hansen H., Borggaard O., Sorensen J. Evaluation of free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrate. Geochim. Cosmochim. Acta 1994, 58:2599-2608.
    • (1994) Geochim. Cosmochim. Acta , vol.58 , pp. 2599-2608
    • Hansen, H.1    Borggaard, O.2    Sorensen, J.3
  • 53
    • 0032030058 scopus 로고    scopus 로고
    • Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism
    • Hansen H., Koch C. Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism. Clay Miner. 1998, 33:87-101.
    • (1998) Clay Miner. , vol.33 , pp. 87-101
    • Hansen, H.1    Koch, C.2
  • 54
    • 0034745586 scopus 로고    scopus 로고
    • Kinetics of nitrate reduction by green rusts - effects of interlayer anion and Fe(II):Fe(III) ratio
    • Hansen H., Guldberg S., Erbs M., Koch C. Kinetics of nitrate reduction by green rusts - effects of interlayer anion and Fe(II):Fe(III) ratio. Appl. Clay Sci. 2001, 18:81-91.
    • (2001) Appl. Clay Sci. , vol.18 , pp. 81-91
    • Hansen, H.1    Guldberg, S.2    Erbs, M.3    Koch, C.4
  • 55
    • 84923352158 scopus 로고    scopus 로고
    • The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron
    • Cho D., Song H., Schwartz F., Kim B., Jeon B. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 2015, 125:41-49.
    • (2015) Chemosphere , vol.125 , pp. 41-49
    • Cho, D.1    Song, H.2    Schwartz, F.3    Kim, B.4    Jeon, B.5
  • 56
    • 69549115112 scopus 로고    scopus 로고
    • Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments
    • Sun W., Sierra-Alvarez R., Milner L., Oremland R., Field J.A. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. Environ. Sci. Technol. 2009, 43:6585-6591.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 6585-6591
    • Sun, W.1    Sierra-Alvarez, R.2    Milner, L.3    Oremland, R.4    Field, J.A.5
  • 57
    • 77958603367 scopus 로고    scopus 로고
    • The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina
    • Sun W., Sierra-Alvarez R., Field J.A. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina. Biotechnol. Bioeng. 2010, 107:786-794.
    • (2010) Biotechnol. Bioeng. , vol.107 , pp. 786-794
    • Sun, W.1    Sierra-Alvarez, R.2    Field, J.A.3
  • 58
    • 84887276539 scopus 로고    scopus 로고
    • Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: a critical review
    • Papirio S., Villa-Gomez D., Esposito G., Pirozzi F., Lens P. Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: a critical review. Crit. Rev. Environ. Sci. Technol. 2013, 43:2545-2580.
    • (2013) Crit. Rev. Environ. Sci. Technol. , vol.43 , pp. 2545-2580
    • Papirio, S.1    Villa-Gomez, D.2    Esposito, G.3    Pirozzi, F.4    Lens, P.5
  • 59
    • 84899450143 scopus 로고    scopus 로고
    • Fluidized-bed denitrification for mine waters. Part I: Low pH and temperature operation
    • Papirio S., Ylinen A., Zou G., Peltola M., Esposito G., Puhakka J. Fluidized-bed denitrification for mine waters. Part I: Low pH and temperature operation. Biodegradation 2014, 25:425-435.
    • (2014) Biodegradation , vol.25 , pp. 425-435
    • Papirio, S.1    Ylinen, A.2    Zou, G.3    Peltola, M.4    Esposito, G.5    Puhakka, J.6
  • 62
    • 0023306197 scopus 로고
    • Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor
    • Kurt M., Dunn I., Bourne J. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol. Bioeng. 1987, 29:493-501.
    • (1987) Biotechnol. Bioeng. , vol.29 , pp. 493-501
    • Kurt, M.1    Dunn, I.2    Bourne, J.3
  • 63
    • 0033167884 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment
    • Chang C., Tseng S., Huang H. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour. Technol. 1999, 69:53-58.
    • (1999) Bioresour. Technol. , vol.69 , pp. 53-58
    • Chang, C.1    Tseng, S.2    Huang, H.3
  • 64
    • 57149106738 scopus 로고    scopus 로고
    • High-rate hydrogenotrophic denitrification in a fluidized-bed biofilm reactor using solid-polymer-electrolyte membrane electrode (SPEME)
    • Komori M., Sakakibara Y. High-rate hydrogenotrophic denitrification in a fluidized-bed biofilm reactor using solid-polymer-electrolyte membrane electrode (SPEME). Water Sci. Technol. 2008, 58:1441-1446.
    • (2008) Water Sci. Technol. , vol.58 , pp. 1441-1446
    • Komori, M.1    Sakakibara, Y.2
  • 65
    • 80053128399 scopus 로고    scopus 로고
    • Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR)
    • Mohammadi A., Movahedian H., Nikaeen M. Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR). Fresen. Environ. Bull. 2011, 20:2427-2434.
    • (2011) Fresen. Environ. Bull. , vol.20 , pp. 2427-2434
    • Mohammadi, A.1    Movahedian, H.2    Nikaeen, M.3
  • 66
    • 84932610184 scopus 로고    scopus 로고
    • The response of aquifer sediments to nitrate exposure: biogeochemical controls on denitrification potential
    • Hartog N., Griffioen J. The response of aquifer sediments to nitrate exposure: biogeochemical controls on denitrification potential. Geophys. Res. Abstr. 2003, 5:1.
    • (2003) Geophys. Res. Abstr. , vol.5 , pp. 1
    • Hartog, N.1    Griffioen, J.2
  • 67
    • 0036216637 scopus 로고    scopus 로고
    • Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration
    • Kimura K., Nakamura M., Watanabe Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration. Water Res. 2002, 36:1758-1766.
    • (2002) Water Res. , vol.36 , pp. 1758-1766
    • Kimura, K.1    Nakamura, M.2    Watanabe, Y.3
  • 68
    • 84983120190 scopus 로고    scopus 로고
    • Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor
    • Sahinkaya E., Yurtsever A., Aktas Ö., Ucar D., Wang Z. Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem. Eng. J. 2015, 180-186.
    • (2015) Chem. Eng. J. , pp. 180-186
    • Sahinkaya, E.1    Yurtsever, A.2    Aktas, Ö.3    Ucar, D.4    Wang, Z.5
  • 69
    • 84866012621 scopus 로고    scopus 로고
    • The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments
    • Martin K., Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour. Technol. 2012, 122:83-94.
    • (2012) Bioresour. Technol. , vol.122 , pp. 83-94
    • Martin, K.1    Nerenberg, R.2
  • 70
    • 4344690893 scopus 로고    scopus 로고
    • Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants
    • Nerenberg R., Rittmann B. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol. 2004, 223-230.
    • (2004) Water Sci Technol. , pp. 223-230
    • Nerenberg, R.1    Rittmann, B.2
  • 71
    • 33746340939 scopus 로고    scopus 로고
    • Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor
    • Chung J., Li X., Rittmann B. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere 2006, 24-34.
    • (2006) Chemosphere , pp. 24-34
    • Chung, J.1    Li, X.2    Rittmann, B.3
  • 72
    • 33646101703 scopus 로고    scopus 로고
    • Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor
    • Chung J., Nerenberg R., Rittmann B. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res. 2006, 40:1634-1642.
    • (2006) Water Res. , vol.40 , pp. 1634-1642
    • Chung, J.1    Nerenberg, R.2    Rittmann, B.3
  • 73
    • 33644851584 scopus 로고    scopus 로고
    • Bioreduction of selenate using a hydrogen-based membrane biofilm reactor
    • Chung J., Nerenberg R., Rittmann B. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 2006, 40:1664-1671.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 1664-1671
    • Chung, J.1    Nerenberg, R.2    Rittmann, B.3
  • 74
    • 33847656144 scopus 로고    scopus 로고
    • Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor
    • Chung J., Rittmann B., Wright W., Bowman R. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor. Biodegradation 2007, 18:199-209.
    • (2007) Biodegradation , vol.18 , pp. 199-209
    • Chung, J.1    Rittmann, B.2    Wright, W.3    Bowman, R.4
  • 75
    • 40949148696 scopus 로고    scopus 로고
    • Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor
    • Chung J., Krajmalnik-Brown R., Rittmann B. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 2008, 42:477-483.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 477-483
    • Chung, J.1    Krajmalnik-Brown, R.2    Rittmann, B.3
  • 76
    • 79960197681 scopus 로고    scopus 로고
    • Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor
    • Xia S., Li H., Zhang Z., Zhang Y., Yang X., Jia R., Xie K., Xu X. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. J. Hazard. Mater. 2011, 192:593-598.
    • (2011) J. Hazard. Mater. , vol.192 , pp. 593-598
    • Xia, S.1    Li, H.2    Zhang, Z.3    Zhang, Y.4    Yang, X.5    Jia, R.6    Xie, K.7    Xu, X.8
  • 77
    • 79751527434 scopus 로고    scopus 로고
    • High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor
    • Xia S., Zhang Z., Zhong F., Zhang J. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor. J. Hazard. Mater. 2011, 186:1367-1373.
    • (2011) J. Hazard. Mater. , vol.186 , pp. 1367-1373
    • Xia, S.1    Zhang, Z.2    Zhong, F.3    Zhang, J.4
  • 78
    • 0036846572 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification in a microporous membrane bioreactor
    • Mansell B., Schroeder E. Hydrogenotrophic denitrification in a microporous membrane bioreactor. Water Res. 2002, 36:4683-4690.
    • (2002) Water Res. , vol.36 , pp. 4683-4690
    • Mansell, B.1    Schroeder, E.2
  • 80
    • 0034985601 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor
    • Ergas S., Reuss A. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J. Water Supply: Res. Tech. Aqua. 2001, 50:161-171.
    • (2001) J. Water Supply: Res. Tech. Aqua. , vol.50 , pp. 161-171
    • Ergas, S.1    Reuss, A.2
  • 81
    • 27944482147 scopus 로고    scopus 로고
    • The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor
    • Shin J., Sang B., Chung Y., Choung Y. The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor. Desalination 2005, 183:447-454.
    • (2005) Desalination , vol.183 , pp. 447-454
    • Shin, J.1    Sang, B.2    Chung, Y.3    Choung, Y.4
  • 82
    • 43049181896 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor
    • Visvanathan C., Hung N., Jegatheesan V. Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor. Process Biochem. 2008, 43:673-682.
    • (2008) Process Biochem. , vol.43 , pp. 673-682
    • Visvanathan, C.1    Hung, N.2    Jegatheesan, V.3
  • 83
    • 0035723547 scopus 로고    scopus 로고
    • Autotrophic denitrification via a novel membrane-attached biofilm reactor
    • Ho C., Tseng S., Chang Y. Autotrophic denitrification via a novel membrane-attached biofilm reactor. Lett. Appl. Microbiol. 2001, 33:201-205.
    • (2001) Lett. Appl. Microbiol. , vol.33 , pp. 201-205
    • Ho, C.1    Tseng, S.2    Chang, Y.3
  • 84
    • 33747247607 scopus 로고    scopus 로고
    • Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane
    • Terada A., Kaku S., Matsumoto S., Tsuneda S. Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane. Biochem. Eng. J. 2006, 31:84-91.
    • (2006) Biochem. Eng. J. , vol.31 , pp. 84-91
    • Terada, A.1    Kaku, S.2    Matsumoto, S.3    Tsuneda, S.4
  • 85
    • 0036248758 scopus 로고    scopus 로고
    • Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water
    • Lee K., Rittmann B.E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res. 2002, 36:2040-2052.
    • (2002) Water Res. , vol.36 , pp. 2040-2052
    • Lee, K.1    Rittmann, B.E.2
  • 86
    • 34047229627 scopus 로고    scopus 로고
    • Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations
    • Schnobrich M., Chaplin B., Semmens M., Novak P. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Res. 2007, 41:1869-1876.
    • (2007) Water Res. , vol.41 , pp. 1869-1876
    • Schnobrich, M.1    Chaplin, B.2    Semmens, M.3    Novak, P.4
  • 87
    • 44749094283 scopus 로고    scopus 로고
    • Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater
    • Celmer D., Oleszkiewicz J., Cicek N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater. Water Res. 2008, 42:3057-3065.
    • (2008) Water Res. , vol.42 , pp. 3057-3065
    • Celmer, D.1    Oleszkiewicz, J.2    Cicek, N.3
  • 88
    • 33748767651 scopus 로고    scopus 로고
    • Fouling in membrane bioreactors used in wastewater treatment
    • Le-Clech P., Chen V., Fane T. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284:17-53.
    • (2006) J. Membr. Sci. , vol.284 , pp. 17-53
    • Le-Clech, P.1    Chen, V.2    Fane, T.3
  • 89
    • 33845871215 scopus 로고    scopus 로고
    • Hydrogen limitation - a method for controlling the performance of membrane biofilm reactor for autotrophic denitrification of wastewater
    • Celmer D., Oleszkiewicz J., Cicek N., Husain H. Hydrogen limitation - a method for controlling the performance of membrane biofilm reactor for autotrophic denitrification of wastewater. Water Sci. Technol. 2006, 54:165-172.
    • (2006) Water Sci. Technol. , vol.54 , pp. 165-172
    • Celmer, D.1    Oleszkiewicz, J.2    Cicek, N.3    Husain, H.4
  • 90
    • 38349106481 scopus 로고    scopus 로고
    • A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors
    • Liao B., Liss S. A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors. J. Environ. Eng. Sci. 2007, 6:247-252.
    • (2007) J. Environ. Eng. Sci. , vol.6 , pp. 247-252
    • Liao, B.1    Liss, S.2
  • 91
    • 0029636771 scopus 로고
    • Membrane-attached biofilms for VOC wastewater treatment. II: Effect of biofilm thickness on performance
    • Freitos dos Santos L., Livingston A. Membrane-attached biofilms for VOC wastewater treatment. II: Effect of biofilm thickness on performance. Biotechnol. Bioeng. 1995, 47:90-95.
    • (1995) Biotechnol. Bioeng. , vol.47 , pp. 90-95
    • Freitos dos Santos, L.1    Livingston, A.2
  • 93
    • 77956456811 scopus 로고    scopus 로고
    • Membrane Biofilm Reactor Process for Nitrate and Perchlorate Removal
    • American Water Works Association Research Foundation
    • S. Adham, T. Gillogly, G. Lehman, B. Rittmann, R. Nerenberg, Membrane Biofilm Reactor Process for Nitrate and Perchlorate Removal, American Water Works Association Research Foundation, 2004.
    • (2004)
    • Adham, S.1    Gillogly, T.2    Lehman, G.3    Rittmann, B.4    Nerenberg, R.5
  • 94
    • 0037707566 scopus 로고    scopus 로고
    • Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment
    • Wang H., Qu J. Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment. Water Res. 2003, 37:3767-3775.
    • (2003) Water Res. , vol.37 , pp. 3767-3775
    • Wang, H.1    Qu, J.2
  • 95
    • 51349128059 scopus 로고    scopus 로고
    • Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification
    • Wan D., Liu H., Qu J., Lei P., Xiao S., Hou Y. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Bioresour. Technol. 2009, 100:142-148.
    • (2009) Bioresour. Technol. , vol.100 , pp. 142-148
    • Wan, D.1    Liu, H.2    Qu, J.3    Lei, P.4    Xiao, S.5    Hou, Y.6
  • 96
    • 0032171367 scopus 로고    scopus 로고
    • Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor
    • Feleke Z., Araki K., Sakakibara Y., Watanabe T., Kuroda M. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Res. 1998, 32:2728-2734.
    • (1998) Water Res. , vol.32 , pp. 2728-2734
    • Feleke, Z.1    Araki, K.2    Sakakibara, Y.3    Watanabe, T.4    Kuroda, M.5
  • 97
    • 0027909725 scopus 로고
    • Electric prompting and control of denitrification
    • Sakakibara Y., Kuroda M. Electric prompting and control of denitrification. Biotechnol. Bioeng. 1993, 42:535-537.
    • (1993) Biotechnol. Bioeng. , vol.42 , pp. 535-537
    • Sakakibara, Y.1    Kuroda, M.2
  • 98
    • 0032007875 scopus 로고    scopus 로고
    • Electrolytic denitrification: long term performance and effect of current intensity
    • Islam S., Suidan M. Electrolytic denitrification: long term performance and effect of current intensity. Water Res. 1998, 32:528-536.
    • (1998) Water Res. , vol.32 , pp. 528-536
    • Islam, S.1    Suidan, M.2
  • 99
    • 0036845639 scopus 로고    scopus 로고
    • High-rate denitrification and SS rejection by biofilm electrode reactor (BER) combined with microfiltration
    • Prosnansky M., Sakakibara Y., Kuroda M. High-rate denitrification and SS rejection by biofilm electrode reactor (BER) combined with microfiltration. Water Res. 2002, 36:4801-4810.
    • (2002) Water Res. , vol.36 , pp. 4801-4810
    • Prosnansky, M.1    Sakakibara, Y.2    Kuroda, M.3
  • 100
    • 0033835765 scopus 로고    scopus 로고
    • Hydrogen-dependent denitrification: preliminary assessment of two bio-electrochemical systems
    • Kiss I., Szekeres S., Bejerano T., Soares M. Hydrogen-dependent denitrification: preliminary assessment of two bio-electrochemical systems. Water Sci. Technol. 2000, 42:373-379.
    • (2000) Water Sci. Technol. , vol.42 , pp. 373-379
    • Kiss, I.1    Szekeres, S.2    Bejerano, T.3    Soares, M.4
  • 101
    • 0032785906 scopus 로고    scopus 로고
    • In situ septic tank effluent denitrification using a sulfur-limestone process
    • Zhang T., Shan J. In situ septic tank effluent denitrification using a sulfur-limestone process. Water Environ. Res. 1999, 71:1283-1291.
    • (1999) Water Environ. Res. , vol.71 , pp. 1283-1291
    • Zhang, T.1    Shan, J.2
  • 102
    • 0035061698 scopus 로고    scopus 로고
    • Kinetic model of autotrophic denitrification in sulfur packed-bed reactors
    • Koenig A., Liu L. Kinetic model of autotrophic denitrification in sulfur packed-bed reactors. Water Res. 2001, 35:1969-1978.
    • (2001) Water Res. , vol.35 , pp. 1969-1978
    • Koenig, A.1    Liu, L.2
  • 103
    • 0035889797 scopus 로고    scopus 로고
    • Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions
    • Oh S., Yoo Y., Young J., Kim I. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J. Biotechnol. 2001, 92:1-8.
    • (2001) J. Biotechnol. , vol.92 , pp. 1-8
    • Oh, S.1    Yoo, Y.2    Young, J.3    Kim, I.4
  • 104
    • 0036328283 scopus 로고    scopus 로고
    • Monitoring the denitrification of wastewater containing high concentrations of nitrate with methanol in a sulfur-packed reactor
    • Kim I., Oh S., Bum M., Lee J., Lee S. Monitoring the denitrification of wastewater containing high concentrations of nitrate with methanol in a sulfur-packed reactor. Appl. Microbiol. Biotechnol. 2002, 59:91-96.
    • (2002) Appl. Microbiol. Biotechnol. , vol.59 , pp. 91-96
    • Kim, I.1    Oh, S.2    Bum, M.3    Lee, J.4    Lee, S.5
  • 105
    • 0037164170 scopus 로고    scopus 로고
    • Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors
    • Koenig A., Liu L. Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors. J. Biotechnol. 2002, 99:161-171.
    • (2002) J. Biotechnol. , vol.99 , pp. 161-171
    • Koenig, A.1    Liu, L.2
  • 106
    • 0037446579 scopus 로고    scopus 로고
    • Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal
    • Bezbaruah A., Zhang T. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal. Environ. Sci. Technol. 2003, 37:1690-1697.
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 1690-1697
    • Bezbaruah, A.1    Zhang, T.2
  • 107
    • 1542269112 scopus 로고    scopus 로고
    • Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system
    • Moon H., Ahn K., Lee S. Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system. Environ. Pollut. 2004, 129:499-507.
    • (2004) Environ. Pollut. , vol.129 , pp. 499-507
    • Moon, H.1    Ahn, K.2    Lee, S.3
  • 108
    • 28844487360 scopus 로고    scopus 로고
    • Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrification biofilm process
    • Zeng H., Zhang T. Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrification biofilm process. Water Res. 2005, 39:4941-4952.
    • (2005) Water Res. , vol.39 , pp. 4941-4952
    • Zeng, H.1    Zhang, T.2
  • 109
    • 33747417106 scopus 로고    scopus 로고
    • Development of a response surface for prediction of nitrate removal in sulfur-limestone autotrophic denitrification fixed-bed reactors
    • Zhang T., Zeng H. Development of a response surface for prediction of nitrate removal in sulfur-limestone autotrophic denitrification fixed-bed reactors. J. Environ. Eng. 2006, 132:1068-1072.
    • (2006) J. Environ. Eng. , vol.132 , pp. 1068-1072
    • Zhang, T.1    Zeng, H.2
  • 111
    • 51549118227 scopus 로고    scopus 로고
    • A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier
    • Moon H., Shin do Y., Nam K., Kim J. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 2008, 73:723-728.
    • (2008) Chemosphere , vol.73 , pp. 723-728
    • Moon, H.1    Shin do, Y.2    Nam, K.3    Kim, J.4
  • 112
    • 0023729459 scopus 로고    scopus 로고
    • Biological denitrification process with hydrogen-oxidizing bacteria for drinking water treatment
    • Gros H., Schnoor G., Rutten P. Biological denitrification process with hydrogen-oxidizing bacteria for drinking water treatment. Water Suppl. 1998, 6:193-198.
    • (1998) Water Suppl. , vol.6 , pp. 193-198
    • Gros, H.1    Schnoor, G.2    Rutten, P.3
  • 113
    • 0023682560 scopus 로고    scopus 로고
    • Nitrate removal from drinking water by means of hydrogenotrophic denitrifiers in a polyurethane carrier reactor
    • Dries D., Liessens J., Verstraete W., Stevens P., de Vos P., de Ley J. Nitrate removal from drinking water by means of hydrogenotrophic denitrifiers in a polyurethane carrier reactor. Wat. Suppl. 1998, 6:181-192.
    • (1998) Wat. Suppl. , vol.6 , pp. 181-192
    • Dries, D.1    Liessens, J.2    Verstraete, W.3    Stevens, P.4    de Vos, P.5    de Ley, J.6
  • 115
    • 0036023861 scopus 로고    scopus 로고
    • A novel in situ technology for the treatment of nitrate contaminated groundwater
    • Haugen K., Semmens M., Novak P. A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res. 2002, 36:3497-3506.
    • (2002) Water Res. , vol.36 , pp. 3497-3506
    • Haugen, K.1    Semmens, M.2    Novak, P.3
  • 116
    • 0033942701 scopus 로고    scopus 로고
    • A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water
    • Lee K., Rittmann B. A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water. Water Sci. Technol. 2000, 41:219-226.
    • (2000) Water Sci. Technol. , vol.41 , pp. 219-226
    • Lee, K.1    Rittmann, B.2
  • 117
    • 21244471123 scopus 로고    scopus 로고
    • Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater
    • Mo H., Oleszkiewicz J., Cicek N., Rezania B. Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater. Water Sci. Technol. 2005, 51:357-364.
    • (2005) Water Sci. Technol. , vol.51 , pp. 357-364
    • Mo, H.1    Oleszkiewicz, J.2    Cicek, N.3    Rezania, B.4
  • 119
    • 38349042151 scopus 로고    scopus 로고
    • A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification
    • Shin J., Sang B., Chung Y., Choung Y. A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification. Desalination 2008, 221:526-533.
    • (2008) Desalination , vol.221 , pp. 526-533
    • Shin, J.1    Sang, B.2    Chung, Y.3    Choung, Y.4
  • 120
    • 67651093927 scopus 로고    scopus 로고
    • Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor
    • Zhang Y., Zhong F., Xia S., Wang X., Li J. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. J. Hazard. Mater. 2009, 170:203-209.
    • (2009) J. Hazard. Mater. , vol.170 , pp. 203-209
    • Zhang, Y.1    Zhong, F.2    Xia, S.3    Wang, X.4    Li, J.5
  • 121
    • 70450263648 scopus 로고    scopus 로고
    • Inorganic precipitation during autotrophic denitrification under various operating conditions
    • Hwang J., Cicek N., Oleszkiewicz J. Inorganic precipitation during autotrophic denitrification under various operating conditions. Environ. Technol. 2009, 30:1475-1485.
    • (2009) Environ. Technol. , vol.30 , pp. 1475-1485
    • Hwang, J.1    Cicek, N.2    Oleszkiewicz, J.3
  • 122
    • 70349309653 scopus 로고    scopus 로고
    • Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors
    • Sahu A., Conneely T., Nusslein K., Ergas S. Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnol. Bioeng. 2009, 104:483-491.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 483-491
    • Sahu, A.1    Conneely, T.2    Nusslein, K.3    Ergas, S.4
  • 124
    • 84928674111 scopus 로고    scopus 로고
    • Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO2 for pH control and as carbon source
    • Xia S., Wang C., Xu X., Tang Y., Wang Z., Gu Z., Zhou Y. Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO2 for pH control and as carbon source. Chem. Eng. J. 2015, 276:59-64.
    • (2015) Chem. Eng. J. , vol.276 , pp. 59-64
    • Xia, S.1    Wang, C.2    Xu, X.3    Tang, Y.4    Wang, Z.5    Gu, Z.6    Zhou, Y.7
  • 125
    • 0028577219 scopus 로고
    • Denitrification and neutralization with an electrochemical and biological reactor
    • Sakakibara Y., Araki K., Tanaka T., Watanabe T., Kuroda M. Denitrification and neutralization with an electrochemical and biological reactor. Water Sci. Technol. 1994, 30:151-155.
    • (1994) Water Sci. Technol. , vol.30 , pp. 151-155
    • Sakakibara, Y.1    Araki, K.2    Tanaka, T.3    Watanabe, T.4    Kuroda, M.5
  • 126
    • 0030771172 scopus 로고    scopus 로고
    • The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater
    • Sakakibara Y., Araki K., Watanabe T., Kuroda M. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater. Water Res. 1997, 36:61-68.
    • (1997) Water Res. , vol.36 , pp. 61-68
    • Sakakibara, Y.1    Araki, K.2    Watanabe, T.3    Kuroda, M.4
  • 127
    • 0035255140 scopus 로고    scopus 로고
    • A novel multi-electrode system for electrolytic and biological water treatments: electric charge transfer and application to electric charge transfer and application to denitrification
    • Sakakibara Y., Nakayama T. A novel multi-electrode system for electrolytic and biological water treatments: electric charge transfer and application to electric charge transfer and application to denitrification. Water Res. 2001, 35:768-778.
    • (2001) Water Res. , vol.35 , pp. 768-778
    • Sakakibara, Y.1    Nakayama, T.2
  • 128
    • 0036082612 scopus 로고    scopus 로고
    • A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide
    • Feleke Z., Sakakibara Y. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Res. 2002, 36:3092-3102.
    • (2002) Water Res. , vol.36 , pp. 3092-3102
    • Feleke, Z.1    Sakakibara, Y.2
  • 129
    • 34247606727 scopus 로고    scopus 로고
    • Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor
    • Zhou M., Fu W., Gu H., Lei L. Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochim. Acta 2007, 52:6052-6059.
    • (2007) Electrochim. Acta , vol.52 , pp. 6052-6059
    • Zhou, M.1    Fu, W.2    Gu, H.3    Lei, L.4
  • 130
    • 65249122597 scopus 로고    scopus 로고
    • Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material
    • Ghafari S., Hasan M., Aroua M. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material. Electrochim. Acta 2009, 54:4164-4171.
    • (2009) Electrochim. Acta , vol.54 , pp. 4164-4171
    • Ghafari, S.1    Hasan, M.2    Aroua, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.