메뉴 건너뛰기




Volumn 86, Issue , 2015, Pages 393-402

Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms

Author keywords

Data driven modeling; Energy conservation; Firefly algorithm; Multi zone HVAC; Predictive operation

Indexed keywords

ALGORITHMS; BIOLUMINESCENCE; CLIMATE CONTROL; DATA MINING; ENERGY CONSERVATION; ENERGY UTILIZATION; EVOLUTIONARY ALGORITHMS; HEURISTIC ALGORITHMS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SENSITIVITY ANALYSIS;

EID: 84931567585     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2015.04.045     Document Type: Article
Times cited : (93)

References (42)
  • 1
    • 37349028760 scopus 로고    scopus 로고
    • A review on building energy consumption information
    • Pérez-Lombard L., Ortiz J., Pout C. A review on building energy consumption information. Energy Build 2008, 40(No. 3):394-398.
    • (2008) Energy Build , vol.40 , Issue.3 , pp. 394-398
    • Pérez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 2
    • 78651430752 scopus 로고    scopus 로고
    • A review of HVAC systems requirements in building energy regulations
    • Pérez-Lombard L., Ortizb J., Coronel J.F., Ismael R.M. A review of HVAC systems requirements in building energy regulations. Energy Build 2011, 43(No. 2):255-268.
    • (2011) Energy Build , vol.43 , Issue.2 , pp. 255-268
    • Pérez-Lombard, L.1    Ortizb, J.2    Coronel, J.F.3    Ismael, R.M.4
  • 4
    • 84874697758 scopus 로고    scopus 로고
    • Minimizing energy consumption of an air handling unit with a computational intelligence approach
    • Kusiak A., Zeng Y., Xu G. Minimizing energy consumption of an air handling unit with a computational intelligence approach. Energy Build 2013, 60(No. 1):355-363.
    • (2013) Energy Build , vol.60 , Issue.1 , pp. 355-363
    • Kusiak, A.1    Zeng, Y.2    Xu, G.3
  • 7
    • 57449101464 scopus 로고    scopus 로고
    • Optimial control strategy for a multi-zone air conditioning system using a genetic algorithm
    • Mossolly M., Ghali K., Ghaddar N. Optimial control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy 2009, 34(No. 1):58-66.
    • (2009) Energy , vol.34 , Issue.1 , pp. 58-66
    • Mossolly, M.1    Ghali, K.2    Ghaddar, N.3
  • 8
    • 84876096673 scopus 로고    scopus 로고
    • Application of entransy in the analysis of HVAC systems in buildings
    • Zhang L., Liu X., Jiang Y. Application of entransy in the analysis of HVAC systems in buildings. Energy 2013, 53(No. 1):332-342.
    • (2013) Energy , vol.53 , Issue.1 , pp. 332-342
    • Zhang, L.1    Liu, X.2    Jiang, Y.3
  • 9
    • 84872226347 scopus 로고    scopus 로고
    • Energy-efficient HVAC systems: simulation-empirical modelling and gradient optimization
    • Vakiloroaya V., Ha Q.P., Samali B. Energy-efficient HVAC systems: simulation-empirical modelling and gradient optimization. Automation Constr 2013, 31:176-185.
    • (2013) Automation Constr , vol.31 , pp. 176-185
    • Vakiloroaya, V.1    Ha, Q.P.2    Samali, B.3
  • 10
    • 84878110707 scopus 로고    scopus 로고
    • Modeling and analysis of pumps in a wastewater treatment plant: a data-mining approach
    • Kusiak A., Zeng Y., Zhang Z. Modeling and analysis of pumps in a wastewater treatment plant: a data-mining approach. Eng Appl Artif Intell 2013, 26(No. 7):1643-2165.
    • (2013) Eng Appl Artif Intell , vol.26 , Issue.7 , pp. 1643-2165
    • Kusiak, A.1    Zeng, Y.2    Zhang, Z.3
  • 12
    • 84868559154 scopus 로고    scopus 로고
    • Minimizing pump energy in a wastewater processing plant
    • Zhang Z., Zeng Y., Kusiak A. Minimizing pump energy in a wastewater processing plant. Energy 2012, 47(No. 1):505-514.
    • (2012) Energy , vol.47 , Issue.1 , pp. 505-514
    • Zhang, Z.1    Zeng, Y.2    Kusiak, A.3
  • 13
    • 84891027432 scopus 로고    scopus 로고
    • Optimization of wind power and its variability with a computational intelligence approach
    • Zhang Z., Zhou Q., Kusiak A. Optimization of wind power and its variability with a computational intelligence approach. IEEE Trans Sustain Energy 2014, 5(No. 1):228-236.
    • (2014) IEEE Trans Sustain Energy , vol.5 , Issue.1 , pp. 228-236
    • Zhang, Z.1    Zhou, Q.2    Kusiak, A.3
  • 14
    • 0031999380 scopus 로고    scopus 로고
    • Application of functional link neural network to HVAC thermal dynamic system identification
    • Teeter J., Chow M. Application of functional link neural network to HVAC thermal dynamic system identification. IEEE Trans Industrial Electron 1998, 45(No. 1):170-176.
    • (1998) IEEE Trans Industrial Electron , vol.45 , Issue.1 , pp. 170-176
    • Teeter, J.1    Chow, M.2
  • 15
    • 17744381963 scopus 로고    scopus 로고
    • Neural computing thermal comfort index for HVAC systems
    • Atthajariyakul S., Leephakpreeda T. Neural computing thermal comfort index for HVAC systems. Energy Convers Manag 2005, 46(No. 15-16):2553-2565.
    • (2005) Energy Convers Manag , vol.46 , Issue.15-16 , pp. 2553-2565
    • Atthajariyakul, S.1    Leephakpreeda, T.2
  • 17
    • 78649318463 scopus 로고    scopus 로고
    • Analysis of an energy efficient building design through data mining approach
    • Kim H., Stumpf A., Kim W. Analysis of an energy efficient building design through data mining approach. Automation Constr 2011, 20(No. 1):37-43.
    • (2011) Automation Constr , vol.20 , Issue.1 , pp. 37-43
    • Kim, H.1    Stumpf, A.2    Kim, W.3
  • 18
    • 84857063430 scopus 로고    scopus 로고
    • A novel methodology for knowledge discovery through mining associations between building operational data
    • Zhun Y., Haghighat F., Fung B., Zhou L. A novel methodology for knowledge discovery through mining associations between building operational data. Energy Build 2012, 47:430-440.
    • (2012) Energy Build , vol.47 , pp. 430-440
    • Zhun, Y.1    Haghighat, F.2    Fung, B.3    Zhou, L.4
  • 19
    • 84897723089 scopus 로고    scopus 로고
    • Data mining in building automation system for improving building operational performance
    • Xiao F., Fan C. Data mining in building automation system for improving building operational performance. Energy Build 2014, 75:109-118.
    • (2014) Energy Build , vol.75 , pp. 109-118
    • Xiao, F.1    Fan, C.2
  • 20
    • 84902674969 scopus 로고    scopus 로고
    • Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method
    • Kusiak A., Xu G., Zhang Z. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method. Energy Convers Manag 2014, 85:146-153.
    • (2014) Energy Convers Manag , vol.85 , pp. 146-153
    • Kusiak, A.1    Xu, G.2    Zhang, Z.3
  • 21
    • 84904870607 scopus 로고    scopus 로고
    • Performance optimization of HVAC systems with computational intelligence algorithms
    • He X., Zhang Z., Kusiak A. Performance optimization of HVAC systems with computational intelligence algorithms. Energy Build 2014, 81:371-380.
    • (2014) Energy Build , vol.81 , pp. 371-380
    • He, X.1    Zhang, Z.2    Kusiak, A.3
  • 22
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Neto A., Fiorelli F. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build 2008, 40(No. 12):2169-2176.
    • (2008) Energy Build , vol.40 , Issue.12 , pp. 2169-2176
    • Neto, A.1    Fiorelli, F.2
  • 23
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Aydinalp-Koksal M., Ugursal V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl Energy 2008, 85(No. 4):271-296.
    • (2008) Appl Energy , vol.85 , Issue.4 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 24
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • Zhao H., Magoulès F. A review on the prediction of building energy consumption. Renew Sustain Energy Rev 2012, 16(No. 6):3586-3592.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.6 , pp. 3586-3592
    • Zhao, H.1    Magoulès, F.2
  • 25
    • 53549109451 scopus 로고    scopus 로고
    • A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems
    • Xu X., Wang S., Sun Z., Xiao F. A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems. Appl Therm Eng 2009, 29(No. 1):91-104.
    • (2009) Appl Therm Eng , vol.29 , Issue.1 , pp. 91-104
    • Xu, X.1    Wang, S.2    Sun, Z.3    Xiao, F.4
  • 27
    • 84857061348 scopus 로고    scopus 로고
    • A method for model-reduction of non-linear thermal dynamics of multi-zone buildings
    • Goyal S., Barooah P. A method for model-reduction of non-linear thermal dynamics of multi-zone buildings. Energy Build 2012, 47:332-340.
    • (2012) Energy Build , vol.47 , pp. 332-340
    • Goyal, S.1    Barooah, P.2
  • 29
    • 84870577828 scopus 로고    scopus 로고
    • Neural networks based predictive control for thermal comfort and energy savings in public buildings
    • Ferreira P., Ruano A., Silva S., Conceicao E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build 2012, 55:238-325.
    • (2012) Energy Build , vol.55 , pp. 238-325
    • Ferreira, P.1    Ruano, A.2    Silva, S.3    Conceicao, E.4
  • 33
    • 68149181697 scopus 로고    scopus 로고
    • Boosting feature selection for neural network based regression
    • Bailly K., Milgram M. Boosting feature selection for neural network based regression. Neural Netw 2000, 2(No. 5):748-756.
    • (2000) Neural Netw , vol.2 , Issue.5 , pp. 748-756
    • Bailly, K.1    Milgram, M.2
  • 35
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu D.C., Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program 1989, 45(No. 1-3):503-528.
    • (1989) Math Program , vol.45 , Issue.1-3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 41
    • 84862878819 scopus 로고    scopus 로고
    • Sliced latin hypercube designs
    • Qian P. Sliced latin hypercube designs. J Am Stat Assoc 2012, 107(No. 497):393-399.
    • (2012) J Am Stat Assoc , vol.107 , Issue.497 , pp. 393-399
    • Qian, P.1
  • 42
    • 0033895382 scopus 로고    scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • Mckay M.D., Beckman R.J., Conover W.I. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42(No. 1):55-61.
    • (2000) Technometrics , vol.42 , Issue.1 , pp. 55-61
    • Mckay, M.D.1    Beckman, R.J.2    Conover, W.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.