메뉴 건너뛰기




Volumn 46, Issue , 2015, Pages 1802-1808

Image processing Based Detection of Fungal Diseases in Plants

Author keywords

Agriculture crops; Fungal disease; Horticulture crops; Pattern recognition

Indexed keywords

AGRICULTURAL ROBOTS; CLIMATE CHANGE; CROPS; DECISION SUPPORT SYSTEMS; DIAGNOSIS; FUNGI; MACHINERY; PATTERN RECOGNITION;

EID: 84931464590     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2015.02.137     Document Type: Conference Paper
Times cited : (133)

References (21)
  • 3
    • 84891387582 scopus 로고    scopus 로고
    • Digital image processing techniques for detecting, quantifying and classifying plant diseases
    • Barbedo JCA. Digital Image Processing Techniques for Detecting, Quantifying and Classifying Plant Diseases. Springer Plus; 2013, Vol.2, No.660, pp. l-12.
    • (2013) Springer Plus , vol.2 , Issue.660 , pp. l-12
    • Barbedo, J.C.A.1
  • 4
    • 79955798770 scopus 로고    scopus 로고
    • The potential of automatic methods of classification to identify leaf diseases from multispectral images
    • Bauer SD, Korc F, Forstner W. The Potential of Automatic Methods of Classification to Identify Leaf Diseases from Multispectral Images. Precision Agriculture; 2011, Vol. 12, pp. 361-377.
    • (2011) Precision Agriculture , vol.12 , pp. 361-377
    • Bauer, S.D.1    Korc, F.2    Forstner, W.3
  • 5
    • 63149166446 scopus 로고    scopus 로고
    • Image pattern classification for the identification of disease causing agents in plants
    • Camargo A and Smith JS, Image Pattern Classification for the Identification of Disease Causing Agents in Plants. Computers and Electronics in Agriculture; 2009, Vol. 66, No. 2, pp. 121-125.
    • (2009) Computers and Electronics in Agriculture , vol.66 , Issue.2 , pp. 121-125
    • Camargo, A.1    Smith, J.S.2
  • 7
    • 77958460469 scopus 로고    scopus 로고
    • Image processing methods for quantatively detecting soybean rust from multispectral images
    • Di Cui, Zhang Q, Li M., Hartman GL, Zhao Y. Image Processing Methods for Quantatively Detecting Soybean Rust from Multispectral Images; Biosystems Engineering; 2010, Vol. 107, No. 3, pp. 186-193.
    • (2010) Biosystems Engineering , vol.107 , Issue.3 , pp. 186-193
    • Cui, D.1    Zhang, Q.2    Li, M.3    Hartman, G.L.4    Zhao, Y.5
  • 9
    • 33947614142 scopus 로고    scopus 로고
    • Application of artificial neural network for detecting phalaenopsis seedling diseases using color and texture features
    • Huang KY. Application of Artificial Neural Network for Detecting Phalaenopsis Seedling Diseases using Color and Texture Features, Computers and Electronics in Agriculture, 2007, Vol.57, no.7, pp. 3-11.
    • (2007) Computers and Electronics in Agriculture , vol.57 , Issue.7 , pp. 3-11
    • Huang, K.Y.1
  • 13
  • 16
    • 84931343752 scopus 로고    scopus 로고
    • Neuro-kNN classification system for detecting fungal disease affected on vegetables using local binary patterns
    • in press
    • Pujari JD, Yakkundimath R, Byadgi AS Neuro-kNN classification system for detecting fungal disease affected on vegetables using local binary patterns. Agricultural Engineering International; CIGR, in press.
    • Agricultural Engineering International; CIGR
    • Pujari, J.D.1    Yakkundimath, R.2    Byadgi, A.S.3
  • 17
    • 84931355449 scopus 로고    scopus 로고
    • Recognition and classification of normal and affected agriculture produce using reduced color and texture features
    • 2014
    • Pujari JD, Yakkundimath R, Byadgi AS Recognition and Classification of Normal and Affected Agriculture Produce Using Reduced Color and Texture Features. International Journal of Computer Applications, 2014, Vol.93, n.11, 2014, pp: 17-24.
    • (2014) International Journal of Computer Applications , vol.93 , Issue.11 , pp. 17-24
    • Pujari, J.D.1    Yakkundimath, R.2    Byadgi, A.S.3
  • 18
    • 33646118990 scopus 로고    scopus 로고
    • Identification of citrus disease using color texture features and discriminate analysis
    • Pydipati R, Burks TF, Lee WS Identification of Citrus Disease Using Color Texture Features and Discriminate Analysis. Computers and Electronics in Agriculture; 2006, Vol. 52, No.1-2, pp. 49-59.
    • (2006) Computers and Electronics in Agriculture , vol.52 , Issue.1-2 , pp. 49-59
    • Pydipati, R.1    Burks, T.F.2    Lee, W.S.3
  • 19
    • 77956892823 scopus 로고    scopus 로고
    • Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
    • Rumpf T, Mahlein AK, Steiner U, Oerke E.C., Dehne HW, Plumer L. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Computers and Electronics in Agriculture; 2010, Vol. 74, No. 1, pp. 91-99.
    • (2010) Computers and Electronics in Agriculture , vol.74 , Issue.1 , pp. 91-99
    • Rumpf, T.1    Mahlein, A.K.2    Steiner, U.3    Oerke, E.C.4    Dehne, H.W.5    Plumer, L.6
  • 21
    • 0000053531 scopus 로고    scopus 로고
    • Quantitative assessment of lesion characteristics and disease severity using digital image processing
    • Tuker CC, Chakraborty K. Quantitative Assessment of Lesion Characteristics and Disease Severity Using Digital Image Processing. Journal of Phypathology; 2008, vol.145, no.7, pp. 273-278.
    • (2008) Journal of Phypathology , vol.145 , Issue.7 , pp. 273-278
    • Tuker, C.C.1    Chakraborty, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.