메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Segmentation and classification of tobacco seedling diseases

Author keywords

First order statistical texture features; Lesion area extraction; Probabilistic neural network; Tobacco seedling diseases

Indexed keywords

ADJUSTABLE PARAMETERS; CONTRAST STRETCHING; DATA SETS; FIRST ORDER; GRAY LEVEL CO-OCCURRENCE MATRIX; LESION AREA EXTRACTION; LIGHTING CONDITIONS; MORPHOLOGICAL OPERATIONS; NOVEL ALGORITHM; PROBABILISTIC NEURAL NETWORKS; TEXTURE FEATURES; TOBACCO LEAVE;

EID: 79957996352     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1980422.1980454     Document Type: Conference Paper
Times cited : (25)

References (17)
  • 1
    • 0342803205 scopus 로고    scopus 로고
    • Enhancing colour differences in images of diseased mushrooms
    • DOI 10.1016/S0168-1699(00)00071-5, PII S0168169900000715
    • Vizhanyo, T., Felfoldi, J., 2000. Enhancing colour differences in images of diseased mushrooms. Computers and Electronics in Agriculture, vol. 26, pp. 187-198. (Pubitemid 30181236)
    • (2000) Computers and Electronics in Agriculture , vol.26 , Issue.2 , pp. 187-198
    • Vizhanyo, T.1    Felfoldi, J.2
  • 2
    • 57449114907 scopus 로고    scopus 로고
    • An image-processing based algorithm to automatically identify plant disease visual symptoms
    • Camargo, A., Smith, J. S., 2009. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystem Engineeing, vol. 102, pp. 9-21.
    • (2009) Biosystem Engineeing , vol.102 , pp. 9-21
    • Camargo, A.1    Smith, J.S.2
  • 3
    • 33646118990 scopus 로고    scopus 로고
    • Identification of citrus disease using color texture features and discriminant analysis
    • Pydipati, R., Burks, T. F., Lee, W. S., 2006. Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics in Agriculture, vol. 52, pp. 49-59.
    • (2006) Computers and Electronics in Agriculture , vol.52 , pp. 49-59
    • Pydipati, R.1    Burks, T.F.2    Lee, W.S.3
  • 4
    • 0042233698 scopus 로고    scopus 로고
    • Fall armyworm damaged maize plant identification using digital images
    • DOI 10.1016/S1537-5110(03)00098-9
    • Sena, D. G., Pinto, F. A. C., 2003. Fall Armyworm Damged Maize Plant Identification using digital Images. Biosystem Engineeing, vol. 85(4), pp. 449-454. (Pubitemid 36996533)
    • (2003) Biosystems Engineering , vol.85 , Issue.4 , pp. 449-454
    • Sena Jr., D.G.1    Pinto, F.A.C.2    Queiroz, D.M.3    Viana, P.A.4
  • 5
    • 33947614142 scopus 로고    scopus 로고
    • Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features
    • DOI 10.1016/j.compag.2007.01.015, PII S0168169907000385
    • Huang, K., 2007. Application of artificial neural network for detecting phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, vol. 57, pp. 3-11. (Pubitemid 46498894)
    • (2007) Computers and Electronics in Agriculture , vol.57 , Issue.1 , pp. 3-11
    • Huang, K.-Y.1
  • 8
    • 52049103553 scopus 로고    scopus 로고
    • The recognition of cucumber disease based on image processing and support vector machine
    • Youwen, T., Tianlai, L., Yan, N., 2008. The recognition of Cucumber Disease Based on Image Processing and Support Vector Machine. 2008 Congress on Image and Signal Processing, pp. 262-267.
    • (2008) 2008 Congress on Image and Signal Processing , pp. 262-267
    • Youwen, T.1    Tianlai, L.2    Yan, N.3
  • 9
    • 32644435666 scopus 로고    scopus 로고
    • Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat
    • DOI 10.1016/j.compag.2005.11.004, PII S016816990600010X
    • Mirik, M., Michels Jr, G. J., Kassymzhanova-Mirik, S., Elliott, N. C., Catana, V., Jones, D. B., Bowling, R., 2006. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Computers and Electronics in Agriculture, vol. 51, pp. 86-98. (Pubitemid 43242935)
    • (2006) Computers and Electronics in Agriculture , vol.51 , Issue.1-2 , pp. 86-98
    • Mirik, M.1    Michels Jr., G.J.2    Kassymzhanova-Mirik, S.3    Elliott, N.C.4    Catana, V.5    Jones, D.B.6    Bowling, R.7
  • 10
    • 18844366662 scopus 로고    scopus 로고
    • Hyperspectral crop reflectance data for characterising and estimating fungal disease severity in wheat
    • DOI 10.1016/j.biosystemseng.2005.02.007, PII S1537511005000255
    • Muhammed, H. H., 2005. Hyperspectral Crop Reflectance Data for characterizing and estimating Fungal Disease severity in Wheat. Biosystem Engineeing, vol. 95(1), pp. 9- 20. (Pubitemid 40689414)
    • (2005) Biosystems Engineering , vol.91 , Issue.1 , pp. 9-20
    • Muhammed, H.H.1
  • 14
    • 40849114755 scopus 로고    scopus 로고
    • A Cognitive vision approach to early pest detection in greenhouse crops
    • Boissard, P., Martin, V., Moisan, S., 2008. A Cognitive vision approach to early pest detection in greenhouse crops. Computers and Electronics in Agriculture, vol. 62, pp. 81-93.
    • (2008) Computers and Electronics in Agriculture , vol.62 , pp. 81-93
    • Boissard, P.1    Martin, V.2    Moisan, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.