메뉴 건너뛰기




Volumn 34, Issue , 2015, Pages 349-371

On the performances of the flower pollination algorithm - Qualitative and quantitative analyses

Author keywords

Continuous optimisation; Flower pollination algorithm; Modified equation; Opposition based learning; Real world benchmarks; Statistical analysis

Indexed keywords

ALGORITHMS; CHEMICAL ANALYSIS; STATISTICAL METHODS;

EID: 84930937520     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.05.015     Document Type: Article
Times cited : (115)

References (83)
  • 3
    • 0003853519 scopus 로고
    • Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces
    • International Computer Science Institute Berkley, CA
    • R. Storn, and K. Price Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces Technical Rep. No. TR-95-012 1995 International Computer Science Institute Berkley, CA
    • (1995) Technical Rep. No. TR-95-012
    • Storn, R.1    Price, K.2
  • 5
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces J. Glob. Optim. 11 1997 341 359
    • (1997) J. Glob. Optim. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 13
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization
    • X.S. Yang Firefly algorithm, stochastic test functions and design optimization Int. J. Bio-Inspir. Comput. 2 2 2010 78 84
    • (2010) Int. J. Bio-Inspir. Comput. , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.S.1
  • 16
    • 84891856416 scopus 로고    scopus 로고
    • Cuckoo search: Recent advances and applications
    • X.S. Yang, and S. Deb Cuckoo search: recent advances and applications Neural Comput. Appl. 24 1 2014 169 174
    • (2014) Neural Comput. Appl. , vol.24 , Issue.1 , pp. 169-174
    • Yang, X.S.1    Deb, S.2
  • 18
    • 84866704537 scopus 로고    scopus 로고
    • Flower pollination algorithm for global optimization
    • Springer Berlin
    • X.S. Yang Flower pollination algorithm for global optimization Unconventional Computation and Natural Computation 2012 Springer Berlin 240 249
    • (2012) Unconventional Computation and Natural Computation , pp. 240-249
    • Yang, X.S.1
  • 19
    • 84880120844 scopus 로고    scopus 로고
    • Exploration and exploitation in evolutionary algorithms: A survey
    • M. Črepinšek, S.H. Liu, and M. Mernik Exploration and exploitation in evolutionary algorithms: a survey ACM Comput. Surv. 45 3 2013 35
    • (2013) ACM Comput. Surv. , vol.45 , Issue.3 , pp. 35
    • Črepinšek, M.1    Liu, S.H.2    Mernik, M.3
  • 22
    • 84891688711 scopus 로고    scopus 로고
    • Multi-objective flower algorithm for optimization
    • X.S. Yang, M. Karamanoglu, and X. He Multi-objective flower algorithm for optimization Proc. Comput. Sci. 18 2013 861 868
    • (2013) Proc. Comput. Sci. , vol.18 , pp. 861-868
    • Yang, X.S.1    Karamanoglu, M.2    He, X.3
  • 23
    • 84900814296 scopus 로고    scopus 로고
    • Flower pollination algorithm: A novel approach for multiobjective optimization
    • X.S. Yang, M. Karamanoglu, and X. He Flower pollination algorithm: a novel approach for multiobjective optimization Eng. Optim. 2013 1 16
    • (2013) Eng. Optim. , pp. 1-16
    • Yang, X.S.1    Karamanoglu, M.2    He, X.3
  • 26
    • 34548668658 scopus 로고    scopus 로고
    • Levy flights, non-local search and simulated annealing
    • I. Pavlyukevich Levy flights, non-local search and simulated annealing J. Comput. Phys. 226 2007 1830 1844
    • (2007) J. Comput. Phys. , vol.226 , pp. 1830-1844
    • Pavlyukevich, I.1
  • 28
    • 84930943339 scopus 로고    scopus 로고
    • Flower pollination optimization algorithm for wireless sensor network lifetime global optimization
    • M. Sharawi, E. Emary, I. Aly Saroit, and H. El-Mahd Flower pollination optimization algorithm for wireless sensor network lifetime global optimization Int. J. Soft Comput. Eng. 4 3 2014 54 59
    • (2014) Int. J. Soft Comput. Eng. , vol.4 , Issue.3 , pp. 54-59
    • Sharawi, M.1    Emary, E.2    Aly Saroit, I.3    El-Mahd, H.4
  • 30
    • 84900390234 scopus 로고    scopus 로고
    • Flower pollination algorithm applied for different economic load dispatch problems
    • R. Prathiba, M. Balasingh Moses, and S. Sakthivel Flower pollination algorithm applied for different economic load dispatch problems Int. J. Eng. Technol. 6 2 2014 1009 1016
    • (2014) Int. J. Eng. Technol. , vol.6 , Issue.2 , pp. 1009-1016
    • Prathiba, R.1    Balasingh Moses, M.2    Sakthivel, S.3
  • 31
    • 84908696502 scopus 로고    scopus 로고
    • A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles
    • O. Abdel-Raouf, M. Abdel-Baset, and I. El-Henawy A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles Int. J. Eng. Trends Technol. 7 3 2014 126 132
    • (2014) Int. J. Eng. Trends Technol. , vol.7 , Issue.3 , pp. 126-132
    • Abdel-Raouf, O.1    Abdel-Baset, M.2    El-Henawy, I.3
  • 32
    • 84930937586 scopus 로고    scopus 로고
    • An improved chaotic flower pollination algorithm for solving large integer programming problems
    • I. El-henawy, and M. Ismail An improved chaotic flower pollination algorithm for solving large integer programming problems Int. J. Digit. Content Technol. Appl. 8 3 2014 72 81
    • (2014) Int. J. Digit. Content Technol. Appl. , vol.8 , Issue.3 , pp. 72-81
    • El-Henawy, I.1    Ismail, M.2
  • 34
    • 84925424511 scopus 로고    scopus 로고
    • DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization
    • D. Chakraborty, S. Saha, and O. Dutta DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization High Perform. Comput. Appl. (ICHPCA'14) 2014 1 6
    • (2014) High Perform. Comput. Appl. (ICHPCA'14) , pp. 1-6
    • Chakraborty, D.1    Saha, S.2    Dutta, O.3
  • 35
    • 84930944371 scopus 로고    scopus 로고
    • Flower pollination algorithm with dimension by dimension improvement
    • R. Wang, and Y. Zhou Flower pollination algorithm with dimension by dimension improvement Math. Probl. Eng. 2014 2014 1 9
    • (2014) Math. Probl. Eng. , vol.2014 , pp. 1-9
    • Wang, R.1    Zhou, Y.2
  • 36
    • 84930935751 scopus 로고    scopus 로고
    • A study on flower pollination algorithm and its applications
    • K. Balasubramani, and K. Marcus A study on flower pollination algorithm and its applications Int. J. Appl. Innov. Eng. Manag. 3 11 2014 230 235
    • (2014) Int. J. Appl. Innov. Eng. Manag. , vol.3 , Issue.11 , pp. 230-235
    • Balasubramani, K.1    Marcus, K.2
  • 37
    • 84930947567 scopus 로고    scopus 로고
    • A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems
    • N.UI Sakib, M.W. Kabir, Md. Subbir Rahman, and M.S. Alam A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems Int. J. Appl. Inf. Syst. 7 9 2014 19 20
    • (2014) Int. J. Appl. Inf. Syst. , vol.7 , Issue.9 , pp. 19-20
    • Sakib, N.U.1    Kabir, M.W.2    Subbir Rahman, Md.3    Alam, M.S.4
  • 38
    • 84921467172 scopus 로고    scopus 로고
    • Study of flower pollination algorithm for continuous optimization
    • S. Lukasik, and P.A. Kowalski Study of flower pollination algorithm for continuous optimization IEEE Conf. Intell. Syst. 2014 451 459
    • (2014) IEEE Conf. Intell. Syst. , pp. 451-459
    • Lukasik, S.1    Kowalski, P.A.2
  • 39
    • 82855169836 scopus 로고    scopus 로고
    • Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
    • IIT Kanpur India
    • P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, and S. Tiwari Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization KanGAL Report 2005 IIT Kanpur India
    • (2005) KanGAL Report
    • Suganthan, P.N.1    Hansen, N.2    Liang, J.J.3    Deb, K.4    Chen, Y.P.5    Auger, A.6    Tiwari, S.7
  • 40
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • J. Derrac, S. Garcia, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm Evol. Comput. 1 2011 3 18
    • (2011) Swarm Evol. Comput. , vol.1 , pp. 3-18
    • Derrac, J.1    Garcia, S.2    Molina, D.3    Herrera, F.4
  • 41
    • 84948614401 scopus 로고    scopus 로고
    • Analyzing convergence performance of evolutionary algorithms: A statistical approach
    • J. Derrac, S. Garcia, S. Hui, P.N. Suganthan, and F. Herrera Analyzing convergence performance of evolutionary algorithms: a statistical approach Inf. Sci. 289 2014 41 58
    • (2014) Inf. Sci. , vol.289 , pp. 41-58
    • Derrac, J.1    Garcia, S.2    Hui, S.3    Suganthan, P.N.4    Herrera, F.5
  • 42
    • 84901805253 scopus 로고    scopus 로고
    • A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms
    • N. Veček, M. Mernik, and M. Črepinšek A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms Inf. Sci. 277 2014 656 679
    • (2014) Inf. Sci. , vol.277 , pp. 656-679
    • Veček, N.1    Mernik, M.2    Črepinšek, M.3
  • 43
    • 84930952213 scopus 로고    scopus 로고
    • Is a comparison of results meaningful from the inexact replications of computational experiments
    • (in press)
    • M. Črepinšek, S.H. Liu, L. Mernik, and M. Mernik Is a comparison of results meaningful from the inexact replications of computational experiments Soft Comput. 2015 (in press)
    • (2015) Soft Comput.
    • Črepinšek, M.1    Liu, S.H.2    Mernik, L.3    Mernik, M.4
  • 44
    • 0034974417 scopus 로고    scopus 로고
    • A new heuristic optimization algorithm: Harmony search
    • Z.W. Geem, J.H. Kim, and G. Loganathan A new heuristic optimization algorithm: harmony search Simulation 76 2001 60 68
    • (2001) Simulation , vol.76 , pp. 60-68
    • Geem, Z.W.1    Kim, J.H.2    Loganathan, G.3
  • 45
    • 84923384640 scopus 로고    scopus 로고
    • On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation
    • 115-127, 215
    • M. Mernik, S.H. Liu, D. Karaboga, and M. Črepinšek On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation Inform. Sci. 229 2015 115-127, 215
    • (2015) Inform. Sci. , vol.229
    • Mernik, M.1    Liu, S.H.2    Karaboga, D.3    Črepinšek, M.4
  • 46
    • 84890697415 scopus 로고    scopus 로고
    • Multi-strategy coevolving aging particle optimization
    • G. Iacca, F. Caraffini, and F. Neri Multi-strategy coevolving aging particle optimization Int. J. Neural Syst. 24 1 2014
    • (2014) Int. J. Neural Syst. , vol.24 , Issue.1
    • Iacca, G.1    Caraffini, F.2    Neri, F.3
  • 47
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scand. J. Stat. 6 2 1979 65 70
    • (1979) Scand. J. Stat. , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 48
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. Garcia, A. Fernandez, J. Luengo, and F. Herrera A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability Soft Comput. 13 10 2008 959 977
    • (2008) Soft Comput. , vol.13 , Issue.10 , pp. 959-977
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 50
    • 84912077811 scopus 로고    scopus 로고
    • A sinusoidal differential evolution algorithm for numerical optimisation
    • A. Draa, S. Bouzoubia, and I. Boukhalfa A sinusoidal differential evolution algorithm for numerical optimisation Appl. Soft Comput. 27 2015 99 126
    • (2015) Appl. Soft Comput. , vol.27 , pp. 99-126
    • Draa, A.1    Bouzoubia, S.2    Boukhalfa, I.3
  • 56
    • 33751355001 scopus 로고    scopus 로고
    • The CMA evolution strategy: A comparing review, towards a new evolutionary computation
    • N. Hansen The CMA evolution strategy: a comparing review, towards a new evolutionary computation Adv. Estim. Distrib. Algorithms 2006 75 102
    • (2006) Adv. Estim. Distrib. Algorithms , pp. 75-102
    • Hansen, N.1
  • 58
    • 84930944995 scopus 로고    scopus 로고
    • Improving differential evolution with successful-parent-selecting framework
    • S.M. Guo, S.S. Yang, P.H. Hsu, and J.S.H. Tsai Improving differential evolution with successful-parent-selecting framework IEEE Trans. Evol. Comput. PP 99 2014 1 14
    • (2014) IEEE Trans. Evol. Comput. , vol.99 , pp. 1-14
    • Guo, S.M.1    Yang, S.S.2    Hsu, P.H.3    Tsai, J.S.H.4
  • 59
    • 70349860273 scopus 로고    scopus 로고
    • JADE: Adaptive differential evolution with optional external archive
    • J. Zhang, and A. Sanderson JADE: adaptive differential evolution with optional external archive IEEE Trans. Evol. Comput. 13 5 2009 945 958
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 945-958
    • Zhang, J.1    Sanderson, A.2
  • 60
    • 34548073895 scopus 로고    scopus 로고
    • Differential evolution and non-separability: Using selective pressure to focus search
    • A.M. Sutton, M. Lunacek, and L.D. Whitley Differential evolution and non-separability: using selective pressure to focus search Proceedings of the 9th Annu. Conf. GECCO 2007 1428 1435
    • (2007) Proceedings of the 9th Annu. Conf. GECCO , pp. 1428-1435
    • Sutton, A.M.1    Lunacek, M.2    Whitley, L.D.3
  • 61
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • A.K. Qin, V.L. Huang, and P.N. Suganthan Differential evolution algorithm with strategy adaptation for global numerical optimization IEEE Trans. Evol. Comput. 13 2 2009 398 417
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 63
    • 84907997978 scopus 로고    scopus 로고
    • Hypothesis testing, type i and type II errors
    • Available from
    • A. Banerjee, U.B. Chitnis, S.L. Jadhav, J.S. Bhawalkar, and S. Chaudhury Hypothesis testing, type I and type II errors Ind. Psychiatry J. 18 2009 127 131 Available from: http://www.industrialpsychiatry.org/text.asp?2009/18/2/127/62274
    • (2009) Ind. Psychiatry J. , vol.18 , pp. 127-131
    • Banerjee, A.1    Chitnis, U.B.2    Jadhav, S.L.3    Bhawalkar, J.S.4    Chaudhury, S.5
  • 66
    • 79957643966 scopus 로고    scopus 로고
    • Modified opposition-based differential evolution for function optimization
    • Q. Xu, L. Wang, H. Baomin, and N. Wang Modified opposition-based differential evolution for function optimization J. Comput. Inf. Syst. 7 5 2011 1582 1591
    • (2011) J. Comput. Inf. Syst. , vol.7 , Issue.5 , pp. 1582-1591
    • Xu, Q.1    Wang, L.2    Baomin, H.3    Wang, N.4
  • 67
    • 84864362808 scopus 로고    scopus 로고
    • Opposition-based learning in the shuffled differential evolution algorithm
    • M.A. Ahandani, and H. Alavi-Rad Opposition-based learning in the shuffled differential evolution algorithm Soft Comput. 16 8 2012 1303 1337
    • (2012) Soft Comput. , vol.16 , Issue.8 , pp. 1303-1337
    • Ahandani, M.A.1    Alavi-Rad, H.2
  • 71
    • 84894291513 scopus 로고    scopus 로고
    • Opposition-based particle swarm optimization with velocity clamping, (OVCPSO)
    • F. Shahzad, A.R. Baig, S. Masood, M. Kamran, and N. Naveed Opposition-based particle swarm optimization with velocity clamping, (OVCPSO) Adv. Intell. Soft Comput. 116 2009 339 348
    • (2009) Adv. Intell. Soft Comput. , vol.116 , pp. 339-348
    • Shahzad, F.1    Baig, A.R.2    Masood, S.3    Kamran, M.4    Naveed, N.5
  • 72
    • 77954430429 scopus 로고    scopus 로고
    • Using opposition-based learning with particle swarm optimization and barebones differential evolution
    • M.G.H. Omran Using opposition-based learning with particle swarm optimization and barebones differential evolution Part. Swarm Optim. 2009 373 384
    • (2009) Part. Swarm Optim. , pp. 373-384
    • Omran, M.G.H.1
  • 77
    • 79960494356 scopus 로고    scopus 로고
    • Enhancing particle swarm optimization using generalized opposition-based learning
    • H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca Enhancing particle swarm optimization using generalized opposition-based learning Inf. Sci. 181 20 2011 4699 4714
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4699-4714
    • Wang, H.1    Wu, Z.2    Rahnamayan, S.3    Liu, Y.4    Ventresca, M.5
  • 78
    • 84859002368 scopus 로고    scopus 로고
    • An adaptative differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
    • S.M. Islam, S. Das, S. Ghosh, S. Roy, and P.N. Suganthan An adaptative differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42 2 2012 482 500
    • (2012) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.42 , Issue.2 , pp. 482-500
    • Islam, S.M.1    Das, S.2    Ghosh, S.3    Roy, S.4    Suganthan, P.N.5
  • 80
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    • N. Hansen, S.D. Muller, and P. Koumoutsakos Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) Evol. Comput. 11 1 2003 1 18
    • (2003) Evol. Comput. , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Muller, S.D.2    Koumoutsakos, P.3
  • 82
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE Trans. Evol. Comput. 10 3 2006 281 295
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 83
    • 84859719176 scopus 로고    scopus 로고
    • Cooperatively coevolving particle swarms for large scale optimization
    • X. Li, and X. Yao Cooperatively coevolving particle swarms for large scale optimization IEEE Trans. Evol. Comput. 16 2 2012 210 224
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.2 , pp. 210-224
    • Li, X.1    Yao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.