메뉴 건너뛰기




Volumn 45, Issue 3, 2013, Pages

Exploration and exploitation in evolutionary algorithms: A survey

Author keywords

Diversity; Evolutionary algorithms; Exploration and exploitation

Indexed keywords

DIVERSITY; EVOLUTIONARY ALGORITHMS (EAS); EXPLORATION AND EXPLOITATION;

EID: 84880120844     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2480741.2480752     Document Type: Review
Times cited : (1190)

References (173)
  • 1
    • 79953276040 scopus 로고    scopus 로고
    • Diversity management in evolutionary many-objective optimization
    • Adra, S. F. And Fleming, P. J. 2011. Diversity Management In Evolutionary Many-Objective Optimization. Ieee Trans. Evol. Comput. 15, 2, 183-195.
    • (2011) Ieee Trans. Evol. Comput. , vol.15 , Issue.2 , pp. 183-195
    • Adra, S.F.1    Fleming, P.J.2
  • 2
    • 17644380954 scopus 로고    scopus 로고
    • The exploration/exploitation tradeoff in dynamic cellular genetic algorithms
    • Alba, E. And Dorronsoro, B. 2005. The Exploration/Exploitation Tradeoff In Dynamic Cellular Genetic Algorithms. Ieee Trans. Evol. Comput. 9, 3, 126-142.
    • (2005) Ieee Trans. Evol. Comput. , vol.9 , Issue.3 , pp. 126-142
    • Alba, E.1    Dorronsoro, B.2
  • 4
    • 79961021075 scopus 로고    scopus 로고
    • Diversity through multiculturality: Assessing migrant choice policies in an island model
    • Araujo, L. And Merelo, J. J. 2011. Diversity Through Multiculturality: Assessing Migrant Choice Policies In An Island Model. Ieee Trans. Evol. Comput. 15, 4, 456-468.
    • (2011) Ieee Trans. Evol. Comput. , vol.15 , Issue.4 , pp. 456-468
    • Araujo, L.1    Merelo, J.J.2
  • 5
    • 0028594515 scopus 로고
    • Selective pressure in evolutionary algorithms: A characterization of selection mechanisms
    • Back, T. 1994. Selective Pressure In Evolutionary Algorithms: A Characterization Of Selection Mechanisms. In Proceedings Of The 1St Conference On Evolutionary Computing. 57-62.
    • (1994) Proceedings Of The 1St Conference On Evolutionary Computing. , pp. 57-62
    • Back, T.1
  • 8
    • 0002651837 scopus 로고
    • An overview of evolutionary algorithms for parameter optimization
    • Back, T. And Schwefel, H.-P. 1993. An Overview Of Evolutionary Algorithms For Parameter Optimization. Evol. Comput. 1, 1, 1-23.
    • (1993) Evol. Comput. , vol.1 , Issue.1 , pp. 1-23
    • Back, T.1    Schwefel, H.-P.2
  • 10
    • 33747885316 scopus 로고    scopus 로고
    • Cultured differential evolution for constrained optimization
    • Becerra, R. L. And Coello Coello, C. A. 2006. Cultured Differential Evolution For Constrained Optimization. Comput. Methods Appl. Mech. Eng. 195, 33-36, 4303-4322.
    • (2006) Comput. Methods Appl. Mech. Eng. , vol.195 , Issue.33-36 , pp. 4303-4322
    • Becerra, R.L.1    Coello Coello, C.A.2
  • 11
    • 1542353697 scopus 로고    scopus 로고
    • Controlling exploration, diversity and escaping local optima in gp: Adopting weights of training sets to model resource consumption
    • Bersano-Begey, T. 1997. Controlling Exploration, Diversity And Escaping Local Optima In Gp: Adopting Weights Of Training Sets To Model Resource Consumption. In Proceedings Of The Late Breaking Papers At The Genetic Programming Conference. 7-10.
    • (1997) Proceedings Of The Late Breaking Papers At The Genetic Programming Conference. , pp. 7-10
    • Bersano-Begey, T.1
  • 12
    • 0035364522 scopus 로고    scopus 로고
    • On self-adaptive features in real-parameter evolutionary algorithms
    • Beyer, H.-G. And Deb, K. 2001. On Self-Adaptive Features In Real-Parameter Evolutionary Algorithms. Ieee Trans. Evol. Comput. 5, 3, 250-270.
    • (2001) Ieee Trans. Evol. Comput. , vol.5 , Issue.3 , pp. 250-270
    • Beyer, H.-G.1    Deb, K.2
  • 14
    • 79956127340 scopus 로고    scopus 로고
    • Hybrid metaheuristics in combinatorial optimization: A survey
    • Blum, C., Puchinger, J., Raidl, G. A., And Roli, A. 2011. Hybrid Metaheuristics In Combinatorial Optimization: A Survey. Appl. Soft Comput. 11, 6, 4135-4151.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.6 , pp. 4135-4151
    • Blum, C.1    Puchinger, J.2    Raidl, G.A.3    Roli, A.4
  • 15
    • 0344236266 scopus 로고    scopus 로고
    • Metaheuristics in combinatorial optimization: Overview and conceptual comparison
    • Blum, C. And Roli, A. 2003. Metaheuristics In Combinatorial Optimization: Overview And Conceptual Comparison. Acm Comput. Surv. 35, 3, 268-308.
    • (2003) Acm Comput. Surv. , vol.35 , Issue.3 , pp. 268-308
    • Blum, C.1    Roli, A.2
  • 17
    • 0038612858 scopus 로고    scopus 로고
    • The balance between proximity and diversity in multiobjective evolutionary algorithms
    • Bosman, P. And Thierens, D. 2003. The Balance Between Proximity And Diversity In Multiobjective Evolutionary Algorithms. Ieee Trans. Evol. Comput. 7, 2, 174-188.
    • (2003) Ieee Trans. Evol. Comput. , vol.7 , Issue.2 , pp. 174-188
    • Bosman, P.1    Thierens, D.2
  • 18
    • 33847199831 scopus 로고    scopus 로고
    • Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    • Brest, J., Greiner, S., Boskovic, B., Mernik, M., And Zumer, V. 2006. Self-Adapting Control Parameters In Differential Evolution: A Comparative Study On Numerical Benchmark Problems. Ieee Trans. Evol. Comput. 10, 6, 646-657.
    • (2006) Ieee Trans. Evol. Comput. , vol.10 , Issue.6 , pp. 646-657
    • Brest, J.1    Greiner, S.2    Boskovic, B.3    Mernik, M.4    Zumer, V.5
  • 19
    • 1542286518 scopus 로고    scopus 로고
    • Diversity in genetic programming: An analysis of measures and correlation with fitness
    • Burke, E., Gustafson, S., And Kendall, G. 2004. Diversity In Genetic Programming: An Analysis Of Measures And Correlation With Fitness. Ieee Trans. Evol. Comput. 8, 1, 47-62.
    • (2004) Ieee Trans. Evol. Comput. , vol.8 , Issue.1 , pp. 47-62
    • Burke, E.1    Gustafson, S.2    Kendall, G.3
  • 21
    • 0344642507 scopus 로고    scopus 로고
    • A taxonomy of evolutionary algorithms in combinatorial optimization
    • Calegary, P., Coray, G., Hertz, A., Kobler, D., And Kuonen, P. 1999. A Taxonomy Of Evolutionary Algorithms In Combinatorial Optimization. J. Heuristics 5, 2, 145-158.
    • (1999) J. Heuristics , vol.5 , Issue.2 , pp. 145-158
    • Calegary, P.1    Coray, G.2    Hertz, A.3    Kobler, D.4    Kuonen, P.5
  • 22
    • 33846063028 scopus 로고    scopus 로고
    • Effects of diversity control in single-objective and multi-objective genetic algorithms
    • Chaiyaratana, N., Piroonratana, T., And Sangkawelert, N. 2007. Effects Of Diversity Control In Single-Objective And Multi-Objective Genetic Algorithms. J. Heuristics 13, 1-34.
    • (2007) J. Heuristics , vol.13 , pp. 1-34
    • Chaiyaratana, N.1    Piroonratana, T.2    Sangkawelert, N.3
  • 23
    • 67650141701 scopus 로고    scopus 로고
    • Preserving and exploiting genetic diversity in evolutionary programming algorithms
    • Chen, G., Low, C. P., And Yang, Z. 2009. Preserving And Exploiting Genetic Diversity In Evolutionary Programming Algorithms. Ieee Trans. Evol. Comput. 13, 3, 661-673.
    • (2009) Ieee Trans. Evol. Comput. , vol.13 , Issue.3 , pp. 661-673
    • Chen, G.1    Low, C.P.2    Yang, Z.3
  • 24
    • 82455188117 scopus 로고    scopus 로고
    • An evolutionary algorithm that makes decision based on the entire previous search history
    • Chow, C. K. And Yuen, S. Y. 2011. An Evolutionary Algorithm That Makes Decision Based On The Entire Previous Search History. Ieee Trans. Evol. Comput. 15, 6, 741-769.
    • (2011) Ieee Trans. Evol. Comput. , vol.15 , Issue.6 , pp. 741-769
    • Chow, C.K.1    Yuen, S.Y.2
  • 26
    • 78651321271 scopus 로고    scopus 로고
    • Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees
    • Crepin Sek, M., Mernik, M., And Liu, S.-H. 2011. Analysis Of Exploration And Exploitation In Evolutionary Algorithms By Ancestry Trees. Int. J. Innovative Comput. Appl. 3, 1, 11-19.
    • (2011) Int. J. Innovative Comput. Appl. , vol.3 , Issue.1 , pp. 11-19
    • Crepin Sek, M.1    Mernik, M.2    Liu, S.-H.3
  • 27
    • 33750743427 scopus 로고    scopus 로고
    • Increasing population diversity through cultural learning
    • Curran, D. And O'riordan, C. 2006. Increasing Population Diversity Through Cultural Learning. Adapt. Behav. 14, 4, 315-338.
    • (2006) Adapt. Behav. , vol.14 , Issue.4 , pp. 315-338
    • Curran, D.1    O'riordan, C.2
  • 33
    • 0001878252 scopus 로고
    • A formal analysis of the role of multi-point crossover in genetic algorithms
    • De Jong, K. A. And Spears,W. 1992. A Formal Analysis Of The Role Of Multi-Point Crossover In Genetic Algorithms. Ann. Math. Artif. Intell. 5, 1, 1-26.
    • (1992) Ann. Math. Artif. Intell. , vol.5 , Issue.1 , pp. 1-26
    • De Jong, K.A.1    Spears, W.2
  • 39
    • 0003309776 scopus 로고    scopus 로고
    • On evolutionary exploration and exploitation
    • Eiben, A. E. And Schippers, C. 1998. On Evolutionary Exploration And Exploitation. Fundamenta Informaticae 35, 35-50.
    • (1998) Fundamenta Informaticae , vol.35 , pp. 35-50
    • Eiben, A.E.1    Schippers, C.2
  • 40
    • 79960494768 scopus 로고    scopus 로고
    • Parameter tuning for configuring and analyzing evolutionary algorithms
    • Eiben, A. E. And Smit, S. K. 2011. Parameter Tuning For Configuring And Analyzing Evolutionary Algorithms. Swarm Evol. Comput. 1, 1, 19-31.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.1 , pp. 19-31
    • Eiben, A.E.1    Smit, S.K.2
  • 42
    • 0001334115 scopus 로고
    • The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination
    • Eshelman, L. J. 1991. The Chc Adaptive Search Algorithm: How To Have Safe Search When Engaging In Nontraditional Genetic Recombination. Found. Genetic Algorith. 1, 265-283.
    • (1991) Found. Genetic Algorith. , vol.1 , pp. 265-283
    • Eshelman, L.J.1
  • 44
    • 79954585120 scopus 로고    scopus 로고
    • Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads
    • Fernandez-Prieto, J. A., Canada-Bago, J., Gadeo-Martos, M. A., And Velasco, J. R. 2011. Optimisation Of Control Parameters For Genetic Algorithms To Test Computer Networks Under Realistic Traffic Loads. Appl. Soft Comput. 11, 4, 3744-3752.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.4 , pp. 3744-3752
    • Fernandez-Prieto, J.A.1    Canada-Bago, J.2    Gadeo-Martos, M.A.3    Velasco, J.R.4
  • 45
    • 70849130055 scopus 로고    scopus 로고
    • A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry
    • Fister, I., Mernik, M., And Filipic, B. 2010. A Hybrid Self-Adaptive Evolutionary Algorithm For Marker Optimization In The Clothing Industry. Appl. Soft Comput. 10, 2, 409-422.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.2 , pp. 409-422
    • Fister, I.1    Mernik, M.2    Filipic, B.3
  • 53
    • 80053572623 scopus 로고    scopus 로고
    • Particle swarm algorithm with hybrid mutation strategy
    • Gao, H. And Xu, W. 2011. Particle Swarm Algorithm With Hybrid Mutation Strategy. Appl. Soft Comput. 11, 8, 5129-5142.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.8 , pp. 5129-5142
    • Gao, H.1    Xu, W.2
  • 56
    • 0037384812 scopus 로고    scopus 로고
    • Sexual selection for genetic algorithms
    • Goh, K. S., Lim, A., And Rodrigues, B. 2003. Sexual Selection For Genetic Algorithms. Artif. Intell. Rev. 19, 123-152.
    • (2003) Artif. Intell. Rev. , vol.19 , pp. 123-152
    • Goh, K.S.1    Lim, A.2    Rodrigues, B.3
  • 58
    • 0002819121 scopus 로고
    • A comparative analysis of selection schemes used in genetic algorithms
    • Morgan Kaufmann, Burlington, Ma
    • Goldberg, D. E. And Deb, K. 1991. A Comparative Analysis Of Selection Schemes Used In Genetic Algorithms. In Foundations Of Genetic Algorithms. Morgan Kaufmann, Burlington, Ma, 69-93.
    • (1991) Foundations Of Genetic Algorithms , pp. 69-93
    • Goldberg, D.E.1    Deb, K.2
  • 60
    • 55949137664 scopus 로고    scopus 로고
    • Enhancing the performance of differential evolution using orthogonal design method
    • Gong, W., Cai, Z., And Jiang, L. 2008. Enhancing The Performance Of Differential Evolution Using Orthogonal Design Method. Appl. Math. Comput. 206, 1, 56-69.
    • (2008) Appl. Math. Comput. , vol.206 , Issue.1 , pp. 56-69
    • Gong, W.1    Cai, Z.2    Jiang, L.3
  • 62
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • Grefenstette, J. J. 1986. Optimization Of Control Parameters For Genetic Algorithms. Ieee Trans. Syst., Man Cybernetics 16, 1, 122-128.
    • (1986) Ieee Trans. Syst., Man Cybernetics , vol.16 , Issue.1 , pp. 122-128
    • Grefenstette, J.J.1
  • 68
    • 0001917647 scopus 로고    scopus 로고
    • Adaptation of genetic algorithm parameters based on fuzzy logic controllers
    • Herrera, F. And Lozano, M. 1996. Adaptation Of Genetic Algorithm Parameters Based On Fuzzy Logic Controllers. Genetic Algorith. Soft Comput. 95-125.
    • (1996) Genetic Algorith. Soft Comput. , pp. 95-125
    • Herrera, F.1    Lozano, M.2
  • 72
    • 33749866321 scopus 로고    scopus 로고
    • Fitness uniform optimization
    • Hutter, M. And Legg, S. 2006. Fitness Uniform Optimization. Ieee Trans. Evol. Comput. 10, 5, 568-589.
    • (2006) Ieee Trans. Evol. Comput. , vol.10 , Issue.5 , pp. 568-589
    • Hutter, M.1    Legg, S.2
  • 74
    • 37449006917 scopus 로고    scopus 로고
    • An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization
    • Ishibuchi, H., Narukawa, K., Tsukamoto, N., And Nojima, Y. 2008. An Empirical Study On Similarity-Based Mating For Evolutionary Multiobjective Combinatorial Optimization. Europ. J. Oper. Res. 188, 1, 57-75.
    • (2008) Europ. J. Oper. Res. , vol.188 , Issue.1 , pp. 57-75
    • Ishibuchi, H.1    Narukawa, K.2    Tsukamoto, N.3    Nojima, Y.4
  • 75
    • 78649856364 scopus 로고    scopus 로고
    • Diversity improvement by non-geometric binary crossover in evolutionary multiobjective optimization
    • Ishibuchi, H.,Tsukamoto, N., And Nojima, Y. 2010B. Diversity Improvement By Non-Geometric Binary Crossover In Evolutionary Multiobjective Optimization. Ieee Trans. Evol. Comput. 14, 6, 985-998.
    • (2010) Ieee Trans. Evol. Comput. , vol.14 , Issue.6 , pp. 985-998
    • Ishibuchi, H.1    Tsukamoto, N.2    Nojima, Y.3
  • 76
    • 0038273913 scopus 로고    scopus 로고
    • Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling
    • Ishibuchi, H., Yoshida, T., And Murata, T. 2003. Balance Between Genetic Search And Local Search In Memetic Algorithms For Multiobjective Permutation Flowshop Scheduling. Ieee Trans. Evol. Comput. 7, 2, 204- 223.
    • (2003) Ieee Trans. Evol. Comput. , vol.7 , Issue.2 , pp. 204-223
    • Ishibuchi, H.1    Yoshida, T.2    Murata, T.3
  • 77
    • 79955765865 scopus 로고    scopus 로고
    • An effective memetic differential evolution algorithm based on chaotic local search
    • Jia, D., Zheng, G., And Khan, M. K. 2011. An Effective Memetic Differential Evolution Algorithm Based On Chaotic Local Search. Inform. Sci. 181, 15, 3175-3187.
    • (2011) Inform. Sci. , vol.181 , Issue.15 , pp. 3175-3187
    • Jia, D.1    Zheng, G.2    Khan, M.K.3
  • 78
    • 84901434141 scopus 로고    scopus 로고
    • Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: A cultural algorithm approach
    • Jin, X. And Reynolds, R. 1999. Using Knowledge-Based Evolutionary Computation To Solve Nonlinear Constraint Optimization Problems: A Cultural Algorithm Approach. In Proceedings Of The Congress On Evolutionary Computation. 1672-1678.
    • (1999) Proceedings Of The Congress On Evolutionary Computation. , pp. 1672-1678
    • Jin, X.1    Reynolds, R.2
  • 79
    • 77957893922 scopus 로고    scopus 로고
    • Parameter tuning of pbil and chc evolutionary algorithms applied to solve the root identification problem
    • Joan-Arinyo, R., Luzon, M. V., And Yeguas, E. 2011. Parameter Tuning Of Pbil And Chc Evolutionary Algorithms Applied To Solve The Root Identification Problem. Appl. Soft Comput. 11, 1, 754-767.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 754-767
    • Joan-Arinyo, R.1    Luzon, M.V.2    Yeguas, E.3
  • 80
    • 34147100514 scopus 로고    scopus 로고
    • A new adaptive genetic algorithm for fixed channel assignment
    • Jose-Revuelta, L. M. S. 2007. A New Adaptive Genetic Algorithm For Fixed Channel Assignment. Inform. Sci. 177, 2655-2678.
    • (2007) Inform. Sci. , vol.177 , pp. 2655-2678
    • Jose-Revuelta, L.M.S.1
  • 81
    • 0003410791 scopus 로고    scopus 로고
    • 3Rd Ed. Springer-Verlag, New York, Ny
    • Kohonen, T. 2001. Self-Organizing Maps 3Rd Ed. Springer-Verlag, New York, Ny.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 82
    • 31744436874 scopus 로고    scopus 로고
    • A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance
    • Koumousis, V. And Katsaras, C. P. 2006. A Saw-Tooth Genetic Algorithm Combining The Effects Of Variable Population Size And Reinitialization To Enhance Performance. Ieee Trans. Evol. Comput. 10, 1, 19-28.
    • (2006) Ieee Trans. Evol. Comput. , vol.10 , Issue.1 , pp. 19-28
    • Koumousis, V.1    Katsaras, C.P.2
  • 84
    • 27344452492 scopus 로고    scopus 로고
    • A tutorial for competent memetic algorithms: Model, taxonomy, and design issues
    • Krasnogor, N. And Smith, J. 2005. A Tutorial For Competent Memetic Algorithms: Model, Taxonomy, And Design Issues. Ieee Trans. Evol. Comput. 9, 5, 474-488.
    • (2005) Ieee Trans. Evol. Comput. , vol.9 , Issue.5 , pp. 474-488
    • Krasnogor, N.1    Smith, J.2
  • 87
    • 79954617714 scopus 로고    scopus 로고
    • Compact genetic algorithm using belief vectors
    • Lee, J.-Y., Kim, M.-S., And Lee, J.-J. 2011. Compact Genetic Algorithm Using Belief Vectors. Appl. Soft Comput. 11, 4, 3385-3401.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.4 , pp. 3385-3401
    • Lee, J.-Y.1    Kim, M.-S.2    Lee, J.-J.3
  • 88
    • 0031236881 scopus 로고    scopus 로고
    • A perspective on premature convergence in genetic algorithms and its markov chain analysis
    • Leung, Y., Gao, Y., And Xu, Z. 1997. A Perspective On Premature Convergence In Genetic Algorithms And Its Markov Chain Analysis. Trans. Neural Netw. 8, 5, 1165-1176.
    • (1997) Trans. Neural Netw. , vol.8 , Issue.5 , pp. 1165-1176
    • Leung, Y.1    Gao, Y.2    Xu, Z.3
  • 89
    • 0035247566 scopus 로고    scopus 로고
    • An orthogonal genetic algorithm with quantization for global numerical optimization
    • Leung, Y. And Wang, Y. 2001. An Orthogonal Genetic Algorithm With Quantization For Global Numerical Optimization. Ieee Trans. Evol. Comput. 5, 1, 41-53.
    • (2001) Ieee Trans. Evol. Comput. , vol.5 , Issue.1 , pp. 41-53
    • Leung, Y.1    Wang, Y.2
  • 90
    • 0036715627 scopus 로고    scopus 로고
    • A species conserving genetic algorithm for multimodal function optimization
    • Li, J.-P., Balazs, M. E., Parks, G. T., And Clarkson, J. P. 2002. A Species Conserving Genetic Algorithm For Multimodal Function Optimization. Evol. Comput. 10 3, 207-234.
    • (2002) Evol. Comput. , vol.10 , Issue.3 , pp. 207-234
    • Li, J.-P.1    Balazs, M.E.2    Parks, G.T.3    Clarkson, J.P.4
  • 91
    • 14744294474 scopus 로고    scopus 로고
    • An adaptive genetic algorithm with diversity-guided mutation and its global convergence property
    • Li, M., Cai, Z., And Sun, G. 2004. An Adaptive Genetic Algorithm With Diversity-Guided Mutation And Its Global Convergence Property. J. Central South Univ. Technol. 11, 3, 323-327.
    • (2004) J. Central South Univ. Technol. , vol.11 , Issue.3 , pp. 323-327
    • Li, M.1    Cai, Z.2    Sun, G.3
  • 92
    • 80053971348 scopus 로고    scopus 로고
    • Chaotic differential evolution algorithm for solving constrained optimization problems
    • Li, Z. And Wang, X. 2011. Chaotic Differential Evolution Algorithm For Solving Constrained Optimization Problems. Inform. Technol. J. 10, 12, 2378-2384.
    • (2011) Inform. Technol. J. , vol.10 , Issue.12 , pp. 2378-2384
    • Li, Z.1    Wang, X.2
  • 93
    • 78751609526 scopus 로고    scopus 로고
    • Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization
    • Liang, Y. And Leung, K.-S. 2011. Genetic Algorithm With Adaptive Elitist-Population Strategies For Multimodal Function Optimization. Appl. Soft Comput. 11, 2, 2017-2034.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2017-2034
    • Liang, Y.1    Leung, K.-S.2
  • 94
    • 78049297417 scopus 로고    scopus 로고
    • Two hybrid differential evolution algorithms for engineering design optimization
    • Liao, T.W. 2010. Two Hybrid Differential Evolution Algorithms For Engineering Design Optimization. Appl. Soft Comput. 10, 4, 1188-1199.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.4 , pp. 1188-1199
    • Liao, T.W.1
  • 95
    • 80054693896 scopus 로고    scopus 로고
    • Analysis on the collaboration between global search and local search in memetic computation
    • Lin, J.-Y. And Chen, Y.-P. 2011. Analysis On The Collaboration Between Global Search And Local Search In Memetic Computation. Ieee Trans. Evol. Comput. 15, 5, 608-622.
    • (2011) Ieee Trans. Evol. Comput. , vol.15 , Issue.5 , pp. 608-622
    • Lin, J.-Y.1    Chen, Y.-P.2
  • 98
    • 85013568026 scopus 로고    scopus 로고
    • To explore or to exploit: An entropy-driven approach for evolutionary algorithms
    • Liu, S.-H., Mernik, M., And Bryant, B. R. 2009. To Explore Or To Exploit: An Entropy-Driven Approach For Evolutionary Algorithms. Int. J. Knowl. Intell. Eng. Syst. 13, 3, 185-206.
    • (2009) Int. J. Knowl. Intell. Eng. Syst. , vol.13 , Issue.3 , pp. 185-206
    • Liu, S.-H.1    Mernik, M.2    Bryant, B.R.3
  • 100
    • 52949139054 scopus 로고    scopus 로고
    • Replacement strategies to preserve useful diversity in steadystate genetic algorithms
    • Lozano, M., Herrera, F., And Cano, J. R. 2008. Replacement Strategies To Preserve Useful Diversity In Steadystate Genetic Algorithms. Inform. Sci. 178, 23, 4421-4433.
    • (2008) Inform. Sci. , vol.178 , Issue.23 , pp. 4421-4433
    • Lozano, M.1    Herrera, F.2    Cano, J.R.3
  • 101
    • 40649094941 scopus 로고    scopus 로고
    • Phenotype diversity objectives for graph grammar evolution
    • World Scientific Publishing, Singapore
    • Luerssen, M. H. 2005. Phenotype Diversity Objectives For Graph Grammar Evolution. In Recent Advances In Artificial Life, World Scientific Publishing, Singapore, 159-170.
    • (2005) Recent Advances In Artificial Life , pp. 159-170
    • Luerssen, M.H.1
  • 104
    • 78650872465 scopus 로고    scopus 로고
    • Differential evolution algorithm with ensemble of parameters and mutation strategies
    • Mallipeddi, R., Suganthan, P. N., Pan, Q. K., And Tasgetiren, M. F. 2011. Differential Evolution Algorithm With Ensemble Of Parameters And Mutation Strategies. Appl. Soft Comput. 11, 2, 1679-1696.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 1679-1696
    • Mallipeddi, R.1    Suganthan, P.N.2    Pan, Q.K.3    Tasgetiren, M.F.4
  • 106
    • 78751606154 scopus 로고    scopus 로고
    • Hybrid optimization with improved tabu search
    • Mashinchi, M. H., Orgun, M. A., And Pedrycz,W. 2011. Hybrid Optimization With Improved Tabu Search. Appl. Soft Comput. 11, 2, 1993-2006.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 1993-2006
    • Mashinchi, M.H.1    Orgun, M.A.2    Pedrycz, W.3
  • 109
    • 10444253956 scopus 로고    scopus 로고
    • Measures of diversity for populations and distances between individuals with highly reorganizable genomes
    • Mattiussi, C.,Waibel,M., And Floreano, D. 2004. Measures Of Diversity For Populations And Distances Between Individuals With Highly Reorganizable Genomes. Evol. Comput. 12, 4, 495-515.
    • (2004) Evol. Comput. , vol.12 , Issue.4 , pp. 495-515
    • Mattiussi, C.1    Waibel, M.2    Floreano, D.3
  • 111
    • 80054704800 scopus 로고    scopus 로고
    • Maintaining healthy population diversity using adaptive crossover, mutation, and selection
    • Mcginley, B.,Maher, J., O'riordan, C., And Morgan, F. 2011. Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, And Selection. Ieee Trans. Evol. Computat. 15, 5, 692-714.
    • (2011) Ieee Trans. Evol. Computat. , vol.15 , Issue.5 , pp. 692-714
    • Mcginley, B.1    Maher, J.2    O'riordan, C.3    Morgan, F.4
  • 114
    • 33745167684 scopus 로고    scopus 로고
    • When and how to develop domain-specific languages
    • Mernik, M., Heering, J., And Sloane, A. 2005. When And How To Develop Domain-Specific Languages. Acm Comput. Sur. 37, 4, 316-344.
    • (2005) Acm Comput. Sur. , vol.37 , Issue.4 , pp. 316-344
    • Mernik, M.1    Heering, J.2    Sloane, A.3
  • 115
    • 0034315990 scopus 로고    scopus 로고
    • Fitness landscape analysis and memetic algorithms for the quadratic assignment problem
    • Merz, P. And Freisleben, B. 2000. Fitness Landscape Analysis And Memetic Algorithms For The Quadratic Assignment Problem. Ieee Trans. Evol. Comput. 4, 4, 337-352.
    • (2000) Ieee Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 337-352
    • Merz, P.1    Freisleben, B.2
  • 117
    • 84855270376 scopus 로고    scopus 로고
    • Generation of grey patterns using an improved genetic-evolutionary algorithm: Some new results
    • Misevicius, A. 2011. Generation Of Grey Patterns Using An Improved Genetic-Evolutionary Algorithm: Some New Results. Inform. Technol. Control 40, 4, 330-343.
    • (2011) Inform. Technol. Control , vol.40 , Issue.4 , pp. 330-343
    • Misevicius, A.1
  • 118
    • 79751506441 scopus 로고    scopus 로고
    • Enhanced improvement of individuals in genetic algorithms
    • Misevicius, A. And Rubliauskas, D. 2008. Enhanced Improvement Of Individuals In Genetic Algorithms. Inform. Technol. Control 37, 3, 179-186.
    • (2008) Inform. Technol. Control , vol.37 , Issue.3 , pp. 179-186
    • Misevicius, A.1    Rubliauskas, D.2
  • 119
    • 81155149865 scopus 로고    scopus 로고
    • A hybrid evolutionary algorithm for tuning a clothsimulation model
    • Mongus, D., Repnik, B.,Mernik, M., And Zalik, B. 2012. A Hybrid Evolutionary Algorithm For Tuning A Clothsimulation Model. Appl. Soft Comput. 12, 1, 266-273.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 266-273
    • Mongus, D.1    Repnik, B.2    Mernik, M.3    Zalik, B.4
  • 120
    • 78449297174 scopus 로고    scopus 로고
    • On-the-fly strategies for evolutionary algorithms
    • Montero, E. And Riff, M.-C. 2011. On-The-Fly Strategies For Evolutionary Algorithms. Inform. Sci. 181, 552- 566.
    • (2011) Inform. Sci. , vol.181 , pp. 552-566
    • Montero, E.1    Riff, M.-C.2
  • 121
    • 38149068280 scopus 로고    scopus 로고
    • Geometric crossovers for multiway graph partitioning
    • Moraglio, A., Kim, Y.-H., Yoon, Y., And Moon, B.-R. 2007. Geometric Crossovers For Multiway Graph Partitioning. Evol. Comput. 15, 4, 445-474.
    • (2007) Evol. Comput. , vol.15 , Issue.4 , pp. 445-474
    • Moraglio, A.1    Kim, Y.-H.2    Yoon, Y.3    Moon, B.-R.4
  • 123
    • 33644510307 scopus 로고    scopus 로고
    • New Ideas In Optimization, Mcgraw Hill Ltd., Maidenhead, U.K.
    • Moscato, P. 1999. Memetic Algorithms: A Short Introduction. In New Ideas In Optimization, Mcgraw Hill Ltd., Maidenhead, U.K., 219-234.
    • (1999) Memetic Algorithms: A Short Introduction. , pp. 219-234
    • Moscato, P.1
  • 127
    • 51849107520 scopus 로고    scopus 로고
    • A comprehensive analysis of hyper-heuristics
    • Ochoa, G., Bilgin, B., And Korkmaz, E. E. 2008. A Comprehensive Analysis Of Hyper-Heuristics. Intell. Data Anal. 12, 1, 3-23.
    • (2008) Intell. Data Anal. , vol.12 , Issue.1 , pp. 3-23
    • Ochoa, G.1    Bilgin, B.2    Korkmaz, E.E.3
  • 130
    • 62549145324 scopus 로고    scopus 로고
    • Balancing population- and individual-level adaptation in changing environments
    • Paenke, I., Jin, Y., And Branke, J. 2009. Balancing Population- And Individual-Level Adaptation In Changing Environments. Adapt. Behav. 17, 2, 153-174.
    • (2009) Adapt. Behav. , vol.17 , Issue.2 , pp. 153-174
    • Paenke, I.1    Jin, Y.2    Branke, J.3
  • 131
    • 78049448559 scopus 로고    scopus 로고
    • A differential evolution algorithm with self-adapting strategy and control parameters
    • Pan, Q.-K., Suganthan, P. N.,Wang, L., Gao, L., And Mallipeddi, R. 2011. A Differential Evolution Algorithm With Self-Adapting Strategy And Control Parameters. Comput. Oper. Res. 38, 1, 394-408.
    • (2011) Comput. Oper. Res. , vol.38 , Issue.1 , pp. 394-408
    • Pan, Q.-K.1    Suganthan, P.N.2    Wang, L.3    Gao, L.4    Mallipeddi, R.5
  • 133
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • Qin, A. K., Huang, V. L., And Suganthan, P. N. 2009. Differential Evolution Algorithm With Strategy Adaptation For Global Numerical Optimization. Ieee Trans. Evol. Comput. 13, 2, 398-417.
    • (2009) Ieee Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 138
    • 0032155883 scopus 로고    scopus 로고
    • Fitness sharing and niching methods revisited
    • Sareni, B. And Krahenbuhl, L. 1998. Fitness Sharing And Niching Methods Revisited. Ieee Trans. Evol. Comput. 2, 3, 97-106.
    • (1998) Ieee Trans. Evol. Comput. , vol.2 , Issue.3 , pp. 97-106
    • Sareni, B.1    Krahenbuhl, L.2
  • 143
    • 0003156745 scopus 로고    scopus 로고
    • Operator and parameter adaptation in genetic algorithms
    • Smith, J. E. And Fogarty, T. C. 1997. Operator And Parameter Adaptation In Genetic Algorithms. Soft Comput. 1, 2, 81-87.
    • (1997) Soft Comput. , vol.1 , Issue.2 , pp. 81-87
    • Smith, J.E.1    Fogarty, T.C.2
  • 144
    • 0001351468 scopus 로고
    • Searching for diverse, cooperative subpopulations with genetic algorithms
    • Smith, R. E., Forrest, S., And Perelson, A. S. 1993. Searching For Diverse, Cooperative Subpopulations With Genetic Algorithms. Evol. Comput. 1, 2, 127-149.
    • (1993) Evol. Comput. , vol.1 , Issue.2 , pp. 127-149
    • Smith, R.E.1    Forrest, S.2    Perelson, A.S.3
  • 145
    • 0242351471 scopus 로고
    • Adaptively resizing populations: Algorithm, analysis, and first results
    • Smith, R. E. And Smuda, E. 1995. Adaptively Resizing Populations: Algorithm, Analysis, And First Results. Complex Syst. 9, 47-72.
    • (1995) Complex Syst. , vol.9 , pp. 47-72
    • Smith, R.E.1    Smuda, E.2
  • 146
  • 148
    • 0028409149 scopus 로고
    • Adaptive probabilities of crossover and mutation in genetic algorithms
    • Srinivas, M. And Patnaik, L. M. 1994. Adaptive Probabilities Of Crossover And Mutation In Genetic Algorithms. Ieee Trans. Syst. Man Cybernetics 24, 656-667.
    • (1994) Ieee Trans. Syst. Man Cybernetics , vol.24 , pp. 656-667
    • Srinivas, M.1    Patnaik, L.M.2
  • 150
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R. And Price, K. 1997. Differential Evolution - A Simple And Efficient Heuristic For Global Optimization Over Continuous Spaces. J. Global Optim. 11, 341-359.
    • (1997) J. Global Optim. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 151
    • 0036723306 scopus 로고    scopus 로고
    • A taxonomy of hybrid metaheuristics
    • Talbi, E. G. 2002. A Taxonomy Of Hybrid Metaheuristics. J. Heuristics 8, 5, 541-564.
    • (2002) J. Heuristics , vol.8 , Issue.5 , pp. 541-564
    • Talbi, E.G.1
  • 152
    • 0041376985 scopus 로고    scopus 로고
    • Genetic diversity as an objective in multi-objective evolutionary algorithms
    • Toffolo, A. And Benini, E. 2003. Genetic Diversity As An Objective In Multi-Objective Evolutionary Algorithms. Evol. Comput. 11, 2, 151-167.
    • (2003) Evol. Comput. , vol.11 , Issue.2 , pp. 151-167
    • Toffolo, A.1    Benini, E.2
  • 154
    • 0031082417 scopus 로고    scopus 로고
    • Forking genetic algorithms: Gas with search space division schemes
    • Tsutsui, S., Fujimoto, Y., And Ghosh, A. 1997A. Forking Genetic Algorithms: Gas With Search Space Division Schemes. Evol. Comput. 5, 1, 61-80.
    • (1997) Evol. Comput. , vol.5 , Issue.1 , pp. 61-80
    • Tsutsui, S.1    Fujimoto, Y.2    Ghosh, A.3
  • 158
    • 80755186925 scopus 로고    scopus 로고
    • Enhancing the search ability of differential evolution through orthogonal crossover
    • Wang, Y.,Cai, Z., And Zhang,Q. 2012. Enhancing The Search Ability Of Differential Evolution Through Orthogonal Crossover. Inform. Sci. 185, 1, 153-177.
    • (2012) Inform. Sci. , vol.185 , Issue.1 , pp. 153-177
    • Wang, Y.1    Cai, Z.2    Zhang, Q.3
  • 159
    • 84880127850 scopus 로고    scopus 로고
    • Molecular biology of the gene. Benjamin cummings, san francisco, ca. Whitley, d.,mathias, k., and fitzhorn, p. 1991. Delta coding: An iterative search strategy for genetic algorithms
    • Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., And Losick, R. 2004. Molecular Biology Of The Gene. Benjamin Cummings, San Francisco, Ca. Whitley, D.,Mathias, K., And Fitzhorn, P. 1991. Delta Coding: An Iterative Search Strategy For Genetic Algorithms. In Proceedings Of The 4Th International Conference On Genetic Algorithms. 77-84.
    • (2004) Proceedings Of The 4Th International Conference On Genetic Algorithms. , pp. 77-84
    • Watson, J.1    Baker, T.2    Bell, S.3    Gann, A.4    Levine, M.5    Losick, R.6
  • 162
    • 33644594355 scopus 로고    scopus 로고
    • A novel approach in parameter adaptation and diversity maintenance for genetic algorithms
    • Wong, Y.-Y., Lee, K.-H., Leung, K.-S., And Ho, C.-W. 2003. A Novel Approach In Parameter Adaptation And Diversity Maintenance For Genetic Algorithms. Soft Comput. 7, 506-515.
    • (2003) Soft Comput. , vol.7 , pp. 506-515
    • Wong, Y.-Y.1    Lee, K.-H.2    Leung, K.-S.3    Ho, C.-W.4
  • 163
    • 53349152167 scopus 로고    scopus 로고
    • Genetic algorithms with memory- and elitism-based immigrants in dynamic environments
    • Yang, S. 2008. Genetic Algorithms With Memory- And Elitism-Based Immigrants In Dynamic Environments. Evol. Comput. 16, 3, 385-416.
    • (2008) Evol. Comput. , vol.16 , Issue.3 , pp. 385-416
    • Yang, S.1
  • 164
    • 0032685734 scopus 로고    scopus 로고
    • Evolutionary programming made faster
    • Yao, X., Liu, Y., And Lin, G. 1999. Evolutionary Programming Made Faster. Ieee Trans. Evol. Comput. 3, 2, 82-102.
    • (1999) Ieee Trans. Evol. Comput. , vol.3 , Issue.2 , pp. 82-102
    • Yao, X.1    Liu, Y.2    Lin, G.3
  • 166
    • 78049316273 scopus 로고    scopus 로고
    • Ensemble of niching algorithms
    • Yu, E. L. And Suganthan, P. N. 2010. Ensemble Of Niching Algorithms. Inform. Sci. 180, 15, 2815-2833.
    • (2010) Inform. Sci. , vol.180 , Issue.15 , pp. 2815-2833
    • Yu, E.L.1    Suganthan, P.N.2
  • 167
    • 67349219650 scopus 로고    scopus 로고
    • A genetic algorithm that adaptively mutates and never revisits
    • Yuen, S. Y. And Chow, C. K. 2009. A Genetic Algorithm That Adaptively Mutates And Never Revisits. Ieee Trans. Evol. Comput. 13, 2, 454-472.
    • (2009) Ieee Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 454-472
    • Yuen, S.Y.1    Chow, C.K.2
  • 168
    • 70349860273 scopus 로고    scopus 로고
    • Jade: Adaptive differential evolution with optional external archive
    • Zhang, J. And Sanderson, A. C. 2009. Jade: Adaptive Differential Evolution With Optional External Archive. Ieee Trans. Evol. Comput. 13, 5, 945-957.
    • (2009) Ieee Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 945-957
    • Zhang, J.1    Sanderson, A.C.2
  • 169
    • 78751613509 scopus 로고    scopus 로고
    • Simulated annealing algorithm with adaptive neighborhood
    • Zhao, X. 2011. Simulated Annealing Algorithm With Adaptive Neighborhood. Appl. Soft Comput. 11, 2, 1827- 1836.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 1827-1836
    • Zhao, X.1
  • 170
    • 59749100661 scopus 로고    scopus 로고
    • Optimization of power allocation for interference cancellation with particle swarm optimization
    • Zielinski, K., Weitkemper, P., Laur, R., And Kammeyer, K.-D. 2009. Optimization Of Power Allocation For Interference Cancellation With Particle Swarm Optimization. Ieee Trans. Evol. Comput. 8, 2, 128-150.
    • (2009) Ieee Trans. Evol. Comput. , vol.8 , Issue.2 , pp. 128-150
    • Zielinski, K.1    Weitkemper, P.2    Laur, R.3    Kammeyer, K.-D.4
  • 171
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • Zitzler, E., Deb, K., And Thiele, L. 2000. Comparison Of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 8, 2, 173-195.
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 172
    • 2942547409 scopus 로고    scopus 로고
    • Spea2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
    • Zitzler, E., Laumanns, M., And Thiele, L. 2002. Spea2: Improving The Strength Pareto Evolutionary Algorithm For Multiobjective Optimization. Evol. Meth. Design: Optim. Control, 95-100.
    • (2002) Evol. Meth. Design: Optim. Control , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 173
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • Zitzler, E. And Thiele, L. 1999. Multiobjective Evolutionary Algorithms: A Comparative Case Study And The Strength Pareto Approach. Ieee Trans. Evol. Comput. 3, 4, 257-271.
    • (1999) Ieee Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.