-
1
-
-
41149117499
-
Science and technology for water purification in the coming decades
-
Shannon M.A., Bohn P.W., Elimelech M., Georgiadis J.G., Mariñas B.J., Mayes A.M. Science and technology for water purification in the coming decades. Nature 2008, 452:301-310.
-
(2008)
Nature
, vol.452
, pp. 301-310
-
-
Shannon, M.A.1
Bohn, P.W.2
Elimelech, M.3
Georgiadis, J.G.4
Mariñas, B.J.5
Mayes, A.M.6
-
2
-
-
84879158907
-
Applications of nanotechnology in water and wastewater treatment
-
Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47:3931-3946.
-
(2013)
Water Res.
, vol.47
, pp. 3931-3946
-
-
Qu, X.1
Alvarez, P.J.J.2
Li, Q.3
-
3
-
-
34250646691
-
High-performance ceramic membranes with a separation layer of metal oxide nanofibers
-
Ke X.B., Zhu H.Y., Gao X.P., Liu J.W., Zheng Z.F. High-performance ceramic membranes with a separation layer of metal oxide nanofibers. Adv. Mater. 2007, 19:785-790.
-
(2007)
Adv. Mater.
, vol.19
, pp. 785-790
-
-
Ke, X.B.1
Zhu, H.Y.2
Gao, X.P.3
Liu, J.W.4
Zheng, Z.F.5
-
4
-
-
33646753805
-
Materials science: making high-flux membranes with carbon nanotubes
-
Sholl D.S. Materials science: making high-flux membranes with carbon nanotubes. Science 2006, 312:1003-1004.
-
(2006)
Science
, vol.312
, pp. 1003-1004
-
-
Sholl, D.S.1
-
5
-
-
38349081504
-
An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery
-
Katsoufidou K., Yiantsios S.G., Karabelas A.J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination 2008, 220:214-227.
-
(2008)
Desalination
, vol.220
, pp. 214-227
-
-
Katsoufidou, K.1
Yiantsios, S.G.2
Karabelas, A.J.3
-
6
-
-
79951862829
-
An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment
-
Yang Y., Li J., Wang H., Song X., Wang T., He B., Liang X., Ngo H.H. An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment. Angew. Chem. Int. Ed. 2011, 50:2148-2150.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 2148-2150
-
-
Yang, Y.1
Li, J.2
Wang, H.3
Song, X.4
Wang, T.5
He, B.6
Liang, X.7
Ngo, H.H.8
-
7
-
-
84897583178
-
Recent progresses on fabrication of photocatalytic membranes for water treatment
-
Zhang X., Wang D.K., Diniz da Costa J.C. Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal. Today 2014, 230:47-54.
-
(2014)
Catal. Today
, vol.230
, pp. 47-54
-
-
Zhang, X.1
Wang, D.K.2
Diniz da Costa, J.C.3
-
8
-
-
84858286847
-
2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification
-
2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012, 211-212:304-316.
-
(2012)
J. Hazard. Mater.
, vol.211-212
, pp. 304-316
-
-
Romanos, G.E.1
Athanasekou, C.P.2
Katsaros, F.K.3
Kanellopoulos, N.K.4
Dionysiou, D.D.5
Likodimos, V.6
Falaras, P.7
-
9
-
-
33744470380
-
2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction
-
2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv. Funct. Mater. 2006, 16:1067-1074.
-
(2006)
Adv. Funct. Mater.
, vol.16
, pp. 1067-1074
-
-
Choi, H.1
Sofranko, A.C.2
Dionysiou, D.D.3
-
11
-
-
84876274170
-
Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants
-
Mendret J., Hatat-Fraile M., Rivallin M., Brosillon S. Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 2013, 111:9-19.
-
(2013)
Sep. Purif. Technol.
, vol.111
, pp. 9-19
-
-
Mendret, J.1
Hatat-Fraile, M.2
Rivallin, M.3
Brosillon, S.4
-
12
-
-
33749387901
-
Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability
-
Zhang H., Quan X., Chen S., Zhao H. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ. Sci. Technol. 2006, 40:6104-6109.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 6104-6109
-
-
Zhang, H.1
Quan, X.2
Chen, S.3
Zhao, H.4
-
13
-
-
84856090966
-
Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes
-
Athanasekou C.P., Romanos G.E., Katsaros F.K., Kordatos K., Likodimos V., Falaras P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Membr. Sci. 2012, 392-393:192-203.
-
(2012)
J. Membr. Sci.
, vol.392-393
, pp. 192-203
-
-
Athanasekou, C.P.1
Romanos, G.E.2
Katsaros, F.K.3
Kordatos, K.4
Likodimos, V.5
Falaras, P.6
-
14
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95:69-96.
-
(1995)
Chem. Rev.
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
15
-
-
84899841032
-
2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities
-
2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Res. 2014, 59:207-218.
-
(2014)
Water Res.
, vol.59
, pp. 207-218
-
-
Goei, R.1
Lim, T.-T.2
-
17
-
-
67349123085
-
3 bioceramic composite membrane: fabrication, characterization and bactericidal activity
-
3 bioceramic composite membrane: fabrication, characterization and bactericidal activity. J. Membr. Sci. 2009, 336:109-117.
-
(2009)
J. Membr. Sci.
, vol.336
, pp. 109-117
-
-
Ma, N.1
Fan, X.2
Quan, X.3
Zhang, Y.4
-
18
-
-
84879935226
-
3 composite membrane with a photocatalytic function: fabrication and energetic performance in water treatment
-
3 composite membrane with a photocatalytic function: fabrication and energetic performance in water treatment. Sep. Purif. Technol. 2013, 116:360-365.
-
(2013)
Sep. Purif. Technol.
, vol.116
, pp. 360-365
-
-
Zhao, H.1
Li, H.2
Yu, H.3
Chang, H.4
Quan, X.5
Chen, S.6
-
20
-
-
0000052904
-
2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol
-
2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem. 1993, 97:9040-9044.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 9040-9044
-
-
Vinodgopal, K.1
Hotchandani, S.2
Kamat, P.V.3
-
21
-
-
46849091753
-
2 hybrid electrode with P-N function for photoelectrocatalytic degradation of organic contaminants
-
2 hybrid electrode with P-N function for photoelectrocatalytic degradation of organic contaminants. Environ. Sci. Technol. 2008, 42:4934-4939.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4934-4939
-
-
Zhao, X.1
Qu, J.2
-
24
-
-
77955359187
-
2 composite nanotube array modified electrode with enhanced photoelectrochemical activity
-
2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 2010, 20:2165-2174.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 2165-2174
-
-
Hou, Y.1
Li, X.2
Zhao, Q.3
Quan, X.4
Chen, G.5
-
26
-
-
33646737675
-
4 film electrode by combined electro-oxidation and photocatalysis
-
4 film electrode by combined electro-oxidation and photocatalysis. Environ. Sci. Technol. 2006, 40:3367-3372.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 3367-3372
-
-
Zhao, X.1
Zhu, Y.2
-
27
-
-
0037144783
-
Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor
-
An T., Xiong Y., Li G., Zha C., Zhu X. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J. Photochem. Photobiol. A: Chem. 2002, 152:155-165.
-
(2002)
J. Photochem. Photobiol. A: Chem.
, vol.152
, pp. 155-165
-
-
An, T.1
Xiong, Y.2
Li, G.3
Zha, C.4
Zhu, X.5
-
28
-
-
79251648541
-
Prediction of permeate flux for turbulent flow in cross flow electric field assisted ultrafiltration
-
Sarkar B., De S. Prediction of permeate flux for turbulent flow in cross flow electric field assisted ultrafiltration. J. Membr. Sci. 2011, 369:77-87.
-
(2011)
J. Membr. Sci.
, vol.369
, pp. 77-87
-
-
Sarkar, B.1
De, S.2
-
30
-
-
40849130004
-
2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water
-
2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J. Membr. Sci. 2008, 313:44-51.
-
(2008)
J. Membr. Sci.
, vol.313
, pp. 44-51
-
-
Zhang, X.1
Du, A.J.2
Lee, P.3
Sun, D.D.4
Leckie, J.O.5
-
31
-
-
80054045388
-
Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential
-
Li A., Zhao X., Liu H., Qu J. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Res. 2011, 45:6131-6140.
-
(2011)
Water Res.
, vol.45
, pp. 6131-6140
-
-
Li, A.1
Zhao, X.2
Liu, H.3
Qu, J.4
-
32
-
-
78649323510
-
3 composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties
-
3 composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties. Water Res. 2010, 44:6104-6114.
-
(2010)
Water Res.
, vol.44
, pp. 6104-6114
-
-
Ma, N.1
Zhang, Y.2
Quan, X.3
Fan, X.4
Zhao, H.5
-
33
-
-
45249117462
-
Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of nom characteristics and water quality parameters
-
Hyung H., Kim J.-H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of nom characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42:4416-4421.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4416-4421
-
-
Hyung, H.1
Kim, J.-H.2
-
34
-
-
0043197240
-
2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy
-
2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy. J. Phys. Chem. B 2003, 107:8988-8996.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 8988-8996
-
-
Liu, H.1
Li, X.Z.2
Leng, Y.J.3
Li, W.Z.4
-
35
-
-
84857365911
-
4 nanoparticles with humic acid for removal of Rhodamine B in water
-
4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 2012, 209-210:193-198.
-
(2012)
J. Hazard. Mater.
, pp. 193-198
-
-
Peng, L.1
Qin, P.2
Lei, M.3
Zeng, Q.4
Song, H.5
Yang, J.6
Shao, J.7
Liao, B.8
Gu, J.9
-
36
-
-
33644554806
-
2 crystallite and the photocatalytic degradation of Rhodamine B
-
2 crystallite and the photocatalytic degradation of Rhodamine B. J. Hazard. Mater. 2006, 129:164-170.
-
(2006)
J. Hazard. Mater.
, vol.129
, pp. 164-170
-
-
Asilturk, M.1
Sayilkan, F.2
Erdemoglu, S.3
Akarsu, M.4
Sayilkan, H.5
Erdemoglu, M.6
Arpac, E.7
|