메뉴 건너뛰기




Volumn 20, Issue 12, 2016, Pages 4753-4759

An efficient radial basis function neural network for hyperspectral remote sensing image classification

Author keywords

Hyperspectral remote sensing images; Pattern classification; Radial basis function neural network; Support vector machine

Indexed keywords

FUNCTIONS; IMAGE RECONSTRUCTION; LOW PASS FILTERS; MATRIX ALGEBRA; PATTERN RECOGNITION; RADIAL BASIS FUNCTION NETWORKS; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 84930800655     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-015-1739-9     Document Type: Article
Times cited : (20)

References (36)
  • 2
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson JA, Swain PH, Ersoy OK (1990) Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans Geosci Remote Sens 28(4):540–552
    • (1990) IEEE Trans Geosci Remote Sens , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 5
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariate functional interpolation and adaptive networks. Complex Syst 2:321–355
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 6
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • Bruzzone L, Prieto DF (1999) A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184
    • (1999) IEEE Trans Geosci Remote Sens , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.F.2
  • 7
    • 0031098234 scopus 로고    scopus 로고
    • ART neural networks for remote sensing: vegetation classification from Landsat TM and terrain data
    • Carpenter GA, Gjaja MN, Gopal S, Woodcock CE (1997) ART neural networks for remote sensing: vegetation classification from Landsat TM and terrain data. IEEE Trans Geosci Remote Sens 35(2):308–325
    • (1997) IEEE Trans Geosci Remote Sens , vol.35 , Issue.2 , pp. 308-325
    • Carpenter, G.A.1    Gjaja, M.N.2    Gopal, S.3    Woodcock, C.E.4
  • 9
    • 33947699893 scopus 로고    scopus 로고
    • Use of neural networks for automatic classification from high-resolution images
    • Del Frate F, Pacifici F, Schiavon G, Solimini C (2007) Use of neural networks for automatic classification from high-resolution images. IEEE Trans Geosci Remote Sens 45(4):800–809
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , Issue.4 , pp. 800-809
    • Del Frate, F.1    Pacifici, F.2    Schiavon, G.3    Solimini, C.4
  • 10
    • 35348882054 scopus 로고    scopus 로고
    • Modified Fisher’s linear discriminant analysis for hyperspectral imagery
    • Du Q (2007) Modified Fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(4):503–507
    • (2007) IEEE Geosci Remote Sens Lett , vol.4 , Issue.4 , pp. 503-507
    • Du, Q.1
  • 11
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568
    • (2008) IEEE Geosci Remote Sens Lett , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 12
    • 0036565011 scopus 로고    scopus 로고
    • Face recognition with radial basis function (RBF) neural networks
    • Er MJ, Wu S, Lu J, Toh HL (2002) Face recognition with radial basis function (RBF) neural networks. IEEE Trans Neural Netw 13(3):697–710
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.3 , pp. 697-710
    • Er, M.J.1    Wu, S.2    Lu, J.3    Toh, H.L.4
  • 14
    • 41449115943 scopus 로고    scopus 로고
    • Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals
    • Garg S, Patra K, Pal SK, Chakraborty D (2008) Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals. Soft Comput 12:777–787
    • (2008) Soft Comput , vol.12 , pp. 777-787
    • Garg, S.1    Patra, K.2    Pal, S.K.3    Chakraborty, D.4
  • 15
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • Guilfoyle KJ, Althouse ML, Chang C-I (2001) A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks. IEEE Trans Geosci Remote Sens 39(10):2314–2318
    • (2001) IEEE Trans Geosci Remote Sens , vol.39 , Issue.10 , pp. 2314-2318
    • Guilfoyle, K.J.1    Althouse, M.L.2    Chang, C.-I.3
  • 16
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 19
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Heermann PD, Khazenie N (1992) Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans Geosci Remote Sens 30(1):81–88
    • (1992) IEEE Trans Geosci Remote Sens , vol.30 , Issue.1 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 20
    • 0043026794 scopus 로고    scopus 로고
    • on the construction and training of reformulated radial basis function neural networks
    • Karayiannis NB, Randolph-Gips MM (2003) on the construction and training of reformulated radial basis function neural networks. IEEE Trans Neural Netw 14(4):835–846
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.4 , pp. 835-846
    • Karayiannis, N.B.1    Randolph-Gips, M.M.2
  • 21
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe DA (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28
    • (2002) IEEE Signal Process Mag , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.A.1
  • 22
    • 84924082815 scopus 로고    scopus 로고
    • Optimizing extreme learning machine for hyperspectral image classification
    • Li J, Du Q, Li W, Li Y (2015) Optimizing extreme learning machine for hyperspectral image classification. J Appl Remote Sens 9:097296
    • (2015) J Appl Remote Sens , vol.9 , pp. 097296
    • Li, J.1    Du, Q.2    Li, W.3    Li, Y.4
  • 23
    • 84905922440 scopus 로고    scopus 로고
    • Joint within-class collaborative representation for hyperspectral image classification
    • Li W, Du Q (2014) Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(6):2200–2208
    • (2014) IEEE J Sel Topics Appl Earth Obs Remote Sens , vol.7 , Issue.6 , pp. 2200-2208
    • Li, W.1    Du, Q.2
  • 24
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
    • (2004) IEEE Trans Geosci Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 25
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 26
    • 0035440535 scopus 로고    scopus 로고
    • A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data
    • Muchoney D, Williamson J (2001) A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Trans Geosci Remote Sens 39(9):1969–1977
    • (2001) IEEE Trans Geosci Remote Sens , vol.39 , Issue.9 , pp. 1969-1977
    • Muchoney, D.1    Williamson, J.2
  • 27
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 28
    • 84962376731 scopus 로고
    • Radial basis functions for multivariate interpolation: a review
    • Mason JC, Cox MG, (eds), Clarendon, Oxford
    • Powell MJD (1987) Radial basis functions for multivariate interpolation: a review. In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon, Oxford, pp 143–167
    • (1987) Algorithms for approximation , pp. 143-167
    • Powell, M.J.D.1
  • 29
    • 84899896987 scopus 로고    scopus 로고
    • E2LMs: ensemble extreme learning machines for hyperspectral image classification
    • Samat A, Du P, Liu S, Li J, Cheng L (2014) E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1060–1069
    • (2014) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.7 , Issue.4 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Liu, S.3    Li, J.4    Cheng, L.5
  • 30
    • 84907184537 scopus 로고    scopus 로고
    • An efficient semi-supervised classification approach for hyperspectral imagery
    • Tan K, Li E, Du Q, Du P (2014) An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J Photogramm Remote Sens 97:36–45
    • (2014) ISPRS J Photogramm Remote Sens , vol.97 , pp. 36-45
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 31
    • 85027923554 scopus 로고    scopus 로고
    • Tan K, Zhou S, Du Q (2015) Semi-supervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci Remote Sens Lett 12 (in press)
    • Tan K, Zhou S, Du Q (2015) Semi-supervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci Remote Sens Lett 12 (in press)
  • 32
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering technology
    • Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral-spatial classification of hyperspectral imagery based on partitional clustering technology. IEEE Trans Geosci Remote Sens 47(8):2973–2987
    • (2009) IEEE Trans Geosci Remote Sens , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 33
    • 84920949749 scopus 로고    scopus 로고
    • Collaborative active and semisupervised learning for hyperspectral remote sensing image classification
    • Wan LJ, Tang K, Li MZ, Zhong YF, Qin AKJ (2015) Collaborative active and semisupervised learning for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 53(5):2384–2396
    • (2015) IEEE Trans Geosci Remote Sens , vol.53 , Issue.5 , pp. 2384-2396
    • Wan, L.J.1    Tang, K.2    Li, M.Z.3    Zhong, Y.F.4    Qin, A.K.J.5
  • 34
    • 84861738326 scopus 로고    scopus 로고
    • Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification
    • Yang H, Du Q, Chen G (2012) Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):544–554
    • (2012) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.5 , Issue.2 , pp. 544-554
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 35
    • 33646500527 scopus 로고    scopus 로고
    • A novel radial basis function neural network for discriminant analysis
    • Yang ZR (2006) A novel radial basis function neural network for discriminant analysis. IEEE Trans Neural Netw 17(3):604–612
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.3 , pp. 604-612
    • Yang, Z.R.1
  • 36
    • 37249063148 scopus 로고    scopus 로고
    • Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes
    • Zhang B, O’Neill K, Kong J, Grzegorczyk TM (2008) Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes. IEEE Trans Geosci Remote Sens 46(1):159–171
    • (2008) IEEE Trans Geosci Remote Sens , vol.46 , Issue.1 , pp. 159-171
    • Zhang, B.1    O’Neill, K.2    Kong, J.3    Grzegorczyk, T.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.