메뉴 건너뛰기




Volumn 29, Issue 5, 2015, Pages 786-805

Pattern-mining approach for conflating crowdsourcing road networks with POIs

Author keywords

conflation; crowdsourcing; data enrichment; pattern mining; road networks

Indexed keywords

DATA MINING; DATA QUALITY; DATA SET; GRAPHICAL METHOD; NETWORK ANALYSIS; PATTERN RECOGNITION; SPATIAL ANALYSIS; SPATIAL DATA;

EID: 84930575139     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2014.997238     Document Type: Article
Times cited : (17)

References (43)
  • 2
    • 84864652195 scopus 로고    scopus 로고
    • Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources
    • M.Al-Bakri, and D.Fairbairn,, 2012. Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources. International Journal of Geographical Information Science, 26 (8), 1437–1456. doi:10.1080/13658816.2011.636012
    • (2012) International Journal of Geographical Information Science , vol.26 , Issue.8 , pp. 1437-1456
    • Al-Bakri, M.1    Fairbairn, D.2
  • 3
    • 35148825049 scopus 로고    scopus 로고
    • Integration of heterogeneous geospatial data in a federated database
    • M.Butenuth,, et al., 2007. Integration of heterogeneous geospatial data in a federated database. ISPRS Journal of Photogrammetry and Remote Sensing, 62 (5), 328–346. doi:10.1016/j.isprsjprs.2007.04.003
    • (2007) ISPRS Journal of Photogrammetry and Remote Sensing , vol.62 , Issue.5 , pp. 328-346
    • Butenuth, M.1
  • 4
    • 33846547207 scopus 로고    scopus 로고
    • Automatically conflating road vector data with orthoimagery
    • C.-C.Chen,, C.A.Knoblock,, and C.Shahabi,, 2006. Automatically conflating road vector data with orthoimagery. GeoInformatica, 10 (4), 495–530. doi:10.1007/s10707-006-0344-6
    • (2006) GeoInformatica , vol.10 , Issue.4 , pp. 495-530
    • Chen, C.-C.1    Knoblock, C.A.2    Shahabi, C.3
  • 5
    • 84864567346 scopus 로고    scopus 로고
    • Geospatial information integration for authoritative and crowd sourced road vector data
    • H.Du,, et al., 2012. Geospatial information integration for authoritative and crowd sourced road vector data. Transactions in GIS, 16 (4), 455–476. doi:10.1111/j.1467-9671.2012.01303.x
    • (2012) Transactions in GIS , vol.16 , Issue.4 , pp. 455-476
    • Du, H.1
  • 6
    • 20444480619 scopus 로고    scopus 로고
    • An algebraic approach to automated geospatial information fusion
    • M.Duckham, and M.Worboys,, 2005. An algebraic approach to automated geospatial information fusion. International Journal of Geographical Information Science, 19 (5), 537–557. doi:10.1080/13658810500032339
    • (2005) International Journal of Geographical Information Science , vol.19 , Issue.5 , pp. 537-557
    • Duckham, M.1    Worboys, M.2
  • 7
    • 84895597100 scopus 로고    scopus 로고
    • Constructing gazetteers from volunteered big geo-data based on Hadoop
    • S.Gao,, et al., 2014. Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2014.02.004.
    • (2014) Computers, Environment and Urban Systems
    • Gao, S.1
  • 8
    • 84932627529 scopus 로고    scopus 로고
    • The evolution of geo-crowdsourcing: bringing volunteered geographic information to the third dimension
    • Sui D., Elwood S., Goodchild M., (eds), Dordrecht: Springer
    • M.Goetz, and A.Zipf,, 2013. The evolution of geo-crowdsourcing: bringing volunteered geographic information to the third dimension. In: D.Sui, S.Elwood, and M.Goodchild, eds. Crowdsourcing geographic knowledge. Dordrecht: Springer, 139–159.
    • (2013) Crowdsourcing geographic knowledge , pp. 139-159
    • Goetz, M.1    Zipf, A.2
  • 12
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A.K.Jain,, 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31 (8), 651–666. doi:10.1016/j.patrec.2009.09.011
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 13
    • 84932625964 scopus 로고    scopus 로고
    • Volunteered geographic information and computational geography: new perspectives
    • Sui D., Elwood S., Goodchild M., (eds), Dordrecht: Springer
    • B.Jiang,, 2013. Volunteered geographic information and computational geography: new perspectives. In: D.Sui, S.Elwood, and M.Goodchild, eds. Crowdsourcing geographic knowledge. Dordrecht: Springer, 125–138.
    • (2013) Crowdsourcing geographic knowledge , pp. 125-138
    • Jiang, B.1
  • 16
    • 84929704628 scopus 로고    scopus 로고
    • Mining trajectory data and geotagged data in social media for road map inference
    • J.Li,, et al., 2014a. Mining trajectory data and geotagged data in social media for road map inference. Transactions in GIS. doi:10.1111/tgis.12072.
    • (2014) Transactions in GIS
    • Li, J.1
  • 17
    • 84912567012 scopus 로고    scopus 로고
    • Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks
    • Q.Li,, et al., 2014b. Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks. International Journal of Geographical Information Science. doi:10.1080/13658816.2014.915401.
    • (2014) International Journal of Geographical Information Science
    • Li, Q.1
  • 18
    • 70350786522 scopus 로고    scopus 로고
    • Road density analysis based on skeleton partitioning for road generalization
    • X.Liu,, T.Ai,, and Y.Liu,, 2009. Road density analysis based on skeleton partitioning for road generalization. Geo-spatial Information Science, 12 (2), 110–116. doi:10.1007/s11806-009-0012-8
    • (2009) Geo-spatial Information Science , vol.12 , Issue.2 , pp. 110-116
    • Liu, X.1    Ai, T.2    Liu, Y.3
  • 20
    • 84894080293 scopus 로고    scopus 로고
    • A weighted multi-attribute method for matching user-generated Points of Interest
    • G.McKenzie,, K.Janowicz,, and B.Adams,, 2014. A weighted multi-attribute method for matching user-generated Points of Interest. Cartography and Geographic Information Science, 41 (2), 125–137. doi:10.1080/15230406.2014.880327
    • (2014) Cartography and Geographic Information Science , vol.41 , Issue.2 , pp. 125-137
    • McKenzie, G.1    Janowicz, K.2    Adams, B.3
  • 22
    • 84911461496 scopus 로고    scopus 로고
    • Recent developments and future trends in volunteered geographic information research: the case of OpenStreetMap
    • P.Neis, and D.Zielstra,, 2014. Recent developments and future trends in volunteered geographic information research: the case of OpenStreetMap. Future Internet, 6 (1), 76–106. doi:10.3390/fi6010076
    • (2014) Future Internet , vol.6 , Issue.1 , pp. 76-106
    • Neis, P.1    Zielstra, D.2
  • 23
    • 80053488665 scopus 로고    scopus 로고
    • Digital map conflation: a review of the process and a proposal for classification
    • J.J.Ruiz,, et al., 2011. Digital map conflation: a review of the process and a proposal for classification. International Journal of Geographical Information Science, 25 (9), 1439–1466. doi:10.1080/13658816.2010.519707
    • (2011) International Journal of Geographical Information Science , vol.25 , Issue.9 , pp. 1439-1466
    • Ruiz, J.J.1
  • 25
    • 84873196955 scopus 로고    scopus 로고
    • Ad hoc matching of vectorial road networks
    • E.Safra,, et al., 2013. Ad hoc matching of vectorial road networks. International Journal of Geographical Information Science, 27 (1), 114–153. doi:10.1080/13658816.2012.667104
    • (2013) International Journal of Geographical Information Science , vol.27 , Issue.1 , pp. 114-153
    • Safra, E.1
  • 26
    • 84868223172 scopus 로고    scopus 로고
    • Matching points of interest from different social networking sites
    • Glimm B., Krüger A., (eds), Berlin: Springer
    • T.Scheffler,, R.Schirru,, and P.Lehmann,, 2012. Matching points of interest from different social networking sites. In: B.Glimm and A.Krüger, eds. KI 2012: advances in artificial intelligence. Berlin: Springer, 245–248.
    • (2012) KI 2012: advances in artificial intelligence , pp. 245-248
    • Scheffler, T.1    Schirru, R.2    Lehmann, P.3
  • 27
    • 84930576708 scopus 로고    scopus 로고
    • Integrating and generalising volunteered geographic information
    • Burghardt D., Duchêne C., Mackaness W., (eds), Switzerland: Springer International Publishing
    • M.Sester,, et al., 2014. Integrating and generalising volunteered geographic information. In: D.Burghardt, C.Duchêne, and W.Mackaness, eds. Abstracting geographic information in a data rich world. Switzerland: Springer International Publishing, 119–155.
    • (2014) Abstracting geographic information in a data rich world , pp. 119-155
    • Sester, M.1
  • 28
    • 70349959808 scopus 로고    scopus 로고
    • A data‐mining approach for assessing consistency between multiple representations in spatial databases
    • D.Sheeren,, S.Mustière,, and J.-D.Zucker,, 2009. A data‐mining approach for assessing consistency between multiple representations in spatial databases. International Journal of Geographical Information Science, 23 (8), 961–992. doi:10.1080/13658810701791949
    • (2009) International Journal of Geographical Information Science , vol.23 , Issue.8 , pp. 961-992
    • Sheeren, D.1    Mustière, S.2    Zucker, J.-D.3
  • 29
    • 59649120422 scopus 로고    scopus 로고
    • Automated geospatial conflation of vector road maps to high resolution imagery
    • W.Song,, et al., 2009. Automated geospatial conflation of vector road maps to high resolution imagery. IEEE Transactions on Image Processing, 18 (2), 388–400. doi:10.1109/TIP.2008.2008044
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.2 , pp. 388-400
    • Song, W.1
  • 30
    • 84932621217 scopus 로고    scopus 로고
    • Volunteered Geographic Information, the Exaflood, and the Growing Digital Divide
    • Sui D., Elwood S., Goodchild M., (eds), Dordrecht: Springer
    • D.Sui,, M.Goodchild,, and S.Elwood,, 2013. Volunteered Geographic Information, the Exaflood, and the Growing Digital Divide. In: D.Sui, S.Elwood, and M.Goodchild, eds. Crowdsourcing Geographic Knowledge. Dordrecht: Springer, 1–12.
    • (2013) Crowdsourcing Geographic Knowledge , pp. 1-12
    • Sui, D.1    Goodchild, M.2    Elwood, S.3
  • 31
    • 84945448162 scopus 로고    scopus 로고
    • Road-based travel recommendation using geo-tagged images
    • Y.Sun,, et al., 2013. Road-based travel recommendation using geo-tagged images. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2013.07.006.
    • (2013) Computers, Environment and Urban Systems
    • Sun, Y.1
  • 35
    • 34548784943 scopus 로고    scopus 로고
    • Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data
    • G.C.Tseng,, 2007. Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics, 23 (17), 2247–2255. doi:10.1093/bioinformatics/btm320
    • (2007) Bioinformatics , vol.23 , Issue.17 , pp. 2247-2255
    • Tseng, G.C.1
  • 36
    • 84924713213 scopus 로고    scopus 로고
    • A novel approach for generating routable road maps from vehicle GPS traces
    • J.Wang,, et al., 2014. A novel approach for generating routable road maps from vehicle GPS traces. International Journal of Geographical Information Science. doi:10.1080/13658816.2014.944527
    • (2014) International Journal of Geographical Information Science
    • Wang, J.1
  • 37
    • 84859143464 scopus 로고    scopus 로고
    • Generating hierarchical strokes from urban street networks based on spatial pattern recognition
    • B.Yang,, X.Luan,, and Q.Li,, 2011. Generating hierarchical strokes from urban street networks based on spatial pattern recognition. International Journal of Geographical Information Science, 25 (12), 2025–2050. doi:10.1080/13658816.2011.570270
    • (2011) International Journal of Geographical Information Science , vol.25 , Issue.12 , pp. 2025-2050
    • Yang, B.1    Luan, X.2    Li, Q.3
  • 38
    • 84888046351 scopus 로고    scopus 로고
    • Geometric-based approach for integrating VGI POIs and road networks
    • B.Yang,, Y.Zhang,, and F.Lu,, 2014. Geometric-based approach for integrating VGI POIs and road networks. International Journal of Geographical Information Science, 28 (1), 126–147. doi:10.1080/13658816.2013.830728
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.1 , pp. 126-147
    • Yang, B.1    Zhang, Y.2    Lu, F.3
  • 39
  • 40
    • 84897436997 scopus 로고    scopus 로고
    • Enrichment of topographic road database for the purpose of routing and navigation
    • M.Zhang,, W.Yao,, and L.Meng,, 2014a. Enrichment of topographic road database for the purpose of routing and navigation. International Journal of Digital Earth, 7 (5), 411–431. doi:10.1080/17538947.2012.717110
    • (2014) International Journal of Digital Earth , vol.7 , Issue.5 , pp. 411-431
    • Zhang, M.1    Yao, W.2    Meng, L.3
  • 41
    • 84898869026 scopus 로고    scopus 로고
    • Data matching of building polygons at multiple map scales improved by contextual information and relaxation
    • X.Zhang,, et al., 2014b. Data matching of building polygons at multiple map scales improved by contextual information and relaxation. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 147–163. doi:10.1016/j.isprsjprs.2014.03.010
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.92 , pp. 147-163
    • Zhang, X.1
  • 42
    • 84859413798 scopus 로고    scopus 로고
    • A comparative study of various strategies to concatenate road segments into strokes for map generalization
    • Q.Zhou, and Z.Li,, 2012. A comparative study of various strategies to concatenate road segments into strokes for map generalization. International Journal of Geographical Information Science, 26 (4), 691–715. doi:10.1080/13658816.2011.609990
    • (2012) International Journal of Geographical Information Science , vol.26 , Issue.4 , pp. 691-715
    • Zhou, Q.1    Li, Z.2
  • 43
    • 79953892152 scopus 로고    scopus 로고
    • Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake
    • M.Zook,, et al., 2010. Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Medical & Health Policy, 2 (2), 7–33. doi:10.2202/1948-4682.1069
    • (2010) World Medical & Health Policy , vol.2 , Issue.2 , pp. 7-33
    • Zook, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.