메뉴 건너뛰기




Volumn 29, Issue 10, 2015, Pages 1394-1406

Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering

Author keywords

bone regeneration; electrospinning; hydroxyapatite; poly ( ; Poly 3 hydroxybutyrate co 3 hydroxyvalerate; ) DL aspartic acid

Indexed keywords

ALKALINITY; AMINO ACIDS; BIODEGRADABLE POLYMERS; BIOMECHANICS; BIOMIMETICS; BONE; CELL PROLIFERATION; ELECTROSPINNING; FOURIER TRANSFORM INFRARED SPECTROSCOPY; FUNCTIONAL POLYMERS; HYDROXYAPATITE; MORPHOLOGY; NANOFIBERS; NANOPARTICLES; PHOSPHATASES; PHYSICOCHEMICAL PROPERTIES; SCANNING ELECTRON MICROSCOPY; SURFACE MORPHOLOGY; TISSUE; TISSUE REGENERATION;

EID: 84930444240     PISSN: 08853282     EISSN: 15308022     Source Type: Journal    
DOI: 10.1177/0885328214568467     Document Type: Article
Times cited : (23)

References (52)
  • 1
    • 84899932932 scopus 로고    scopus 로고
    • Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering
    • Rajzer I, Menaszek E, Kwiatkowski R, et al. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med. 2014 ; 25: 1239-1247
    • (2014) J Mater Sci Mater Med , vol.25 , pp. 1239-1247
    • Rajzer, I.1    Menaszek, E.2    Kwiatkowski, R.3
  • 2
    • 70349104569 scopus 로고    scopus 로고
    • Electrospun nanostructured scaffolds for bone tissue engineering
    • Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009 ; 5: 2884-2893
    • (2009) Acta Biomater , vol.5 , pp. 2884-2893
    • Prabhakaran, M.P.1    Venugopal, J.2    Ramakrishna, S.3
  • 3
    • 84906861855 scopus 로고    scopus 로고
    • An appraisal of the efficacy and effectiveness of nanoscaffolds developed by different techniques for bone tissue engineering applications: Electrospinning a paradigm shift
    • Sakina R, Ali M. An appraisal of the efficacy and effectiveness of nanoscaffolds developed by different techniques for bone tissue engineering applications: electrospinning a paradigm shift. Adv Polym Tech. 2014 ; 33: 1-8
    • (2014) Adv Polym Tech , vol.33 , pp. 1-8
    • Sakina, R.1    Ali, M.2
  • 4
    • 72049090386 scopus 로고    scopus 로고
    • New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications
    • Malheiro VN, Caridade SG, Alves NM, et al. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010 ; 6: 418-428
    • (2010) Acta Biomater , vol.6 , pp. 418-428
    • Malheiro, V.N.1    Caridade, S.G.2    Alves, N.M.3
  • 5
    • 79551608920 scopus 로고    scopus 로고
    • Fabrication of bioactive carbon nonwovens for bone tissue regeneration
    • Janicki J. Fabrication of bioactive carbon nonwovens for bone tissue regeneration. Fibres Text East Eur. 2011 ; 19: 66-72
    • (2011) Fibres Text East Eur , vol.19 , pp. 66-72
    • Janicki, J.1
  • 6
    • 84878254900 scopus 로고    scopus 로고
    • High throughput of quality nanofibers via one stepped pyramid-shaped spinneret
    • Jiang G, Zhang S, Qin X. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Mater Lett. 2013 ; 106: 56-58
    • (2013) Mater Lett , vol.106 , pp. 56-58
    • Jiang, G.1    Zhang, S.2    Qin, X.3
  • 7
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: A review
    • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006 ; 12: 1197-1211
    • (2006) Tissue Eng , vol.12 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 8
    • 60049100244 scopus 로고    scopus 로고
    • Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts
    • Gupta D, Venugopal J, Mitra S, et al. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 2009 ; 30: 2085-2094
    • (2009) Biomaterials , vol.30 , pp. 2085-2094
    • Gupta, D.1    Venugopal, J.2    Mitra, S.3
  • 9
    • 30744472423 scopus 로고    scopus 로고
    • Acclerated microwave processing of nanocrystalline hydroxyapatite
    • Rameshbabu N, Rao KP, Kumar TSS. Acclerated microwave processing of nanocrystalline hydroxyapatite. J Mater Sci. 2005 ; 40: 6319-6323
    • (2005) J Mater Sci , vol.40 , pp. 6319-6323
    • Rameshbabu, N.1    Rao, K.P.2    Kumar, T.S.S.3
  • 10
    • 39149124477 scopus 로고    scopus 로고
    • State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
    • Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007 ; 1: 245-260
    • (2007) J Tissue Eng Regen Med , vol.1 , pp. 245-260
    • Hutmacher, D.W.1    Schantz, J.T.2    Lam, C.X.3
  • 11
    • 64949119265 scopus 로고    scopus 로고
    • Calcium orthophosphate-based biocomposites and hybrid biomaterials
    • Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009 ; 44: 2343-2387
    • (2009) J Mater Sci , vol.44 , pp. 2343-2387
    • Dorozhkin, S.V.1
  • 12
    • 77956189952 scopus 로고    scopus 로고
    • Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration
    • Francis L, Venugopal J, Prabhakaran MP, et al. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomater. 2010 ; 6: 4100-4109
    • (2010) Acta Biomater , vol.6 , pp. 4100-4109
    • Francis, L.1    Venugopal, J.2    Prabhakaran, M.P.3
  • 13
    • 41149139315 scopus 로고    scopus 로고
    • Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers
    • Venugopal J, Low S, Choon AT, et al. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med. 2008 ; 19: 2039-2046
    • (2008) J Mater Sci Mater Med , vol.19 , pp. 2039-2046
    • Venugopal, J.1    Low, S.2    Choon, A.T.3
  • 14
    • 77956181774 scopus 로고    scopus 로고
    • Composite materials based on silk proteins
    • Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010 ; 35: 1093-1115
    • (2010) Prog Polym Sci , vol.35 , pp. 1093-1115
    • Hardy, J.G.1    Scheibel, T.R.2
  • 15
    • 0035925001 scopus 로고    scopus 로고
    • Ceramics for medical applications
    • Vallet Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001 ; 2: 97-108
    • (2001) J Chem Soc Dalton Trans , vol.2 , pp. 97-108
    • Vallet Regí, M.1
  • 16
    • 0027277009 scopus 로고
    • Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction
    • Landis W, Song M, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993 ; 110: 39-54
    • (1993) J Struct Biol , vol.110 , pp. 39-54
    • Landis, W.1    Song, M.2    Leith, A.3
  • 17
    • 43149114420 scopus 로고    scopus 로고
    • Bone tissue engineering with premineralized silk scaffolds
    • Kim HJ, Kim UJ, Kim HS, et al. Bone tissue engineering with premineralized silk scaffolds. Bone. 2008 ; 42: 1226-1234
    • (2008) Bone , vol.42 , pp. 1226-1234
    • Kim, H.J.1    Kim, U.J.2    Kim, H.S.3
  • 18
    • 22544467008 scopus 로고    scopus 로고
    • The application of polyhydroxyalkanoates as tissue engineering materials
    • Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005 ; 26: 6565-6578
    • (2005) Biomaterials , vol.26 , pp. 6565-6578
    • Chen, G.Q.1    Wu, Q.2
  • 19
    • 73149086132 scopus 로고    scopus 로고
    • Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications
    • Yuan J, Xing ZC, Park SW, et al. Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res. 2009 ; 17: 850-855
    • (2009) Macromol Res , vol.17 , pp. 850-855
    • Yuan, J.1    Xing, Z.C.2    Park, S.W.3
  • 20
    • 80052768917 scopus 로고    scopus 로고
    • Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli
    • Kuppan P, Vasanthan KS, Sundaramurthi D, et al. Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules. 2011 ; 12: 3156-3165
    • (2011) Biomacromolecules , vol.12 , pp. 3156-3165
    • Kuppan, P.1    Vasanthan, K.S.2    Sundaramurthi, D.3
  • 21
    • 84896407136 scopus 로고    scopus 로고
    • Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering
    • Prabhakaran MP, Vatankhah E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng. 2013 ; 110: 2775-2784
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2775-2784
    • Prabhakaran, M.P.1    Vatankhah, E.2    Ramakrishna, S.3
  • 22
    • 64249172227 scopus 로고    scopus 로고
    • Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells
    • Hu YJ, Wei X, Zhao W, et al. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 2009 ; 5: 1115-1125
    • (2009) Acta Biomater , vol.5 , pp. 1115-1125
    • Hu, Y.J.1    Wei, X.2    Zhao, W.3
  • 23
    • 84864147565 scopus 로고    scopus 로고
    • Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold
    • Sankar D, Chennazhi KP, Nair SV, et al. Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohyd Polym. 2012 ; 9: 725-729
    • (2012) Carbohyd Polym , vol.9 , pp. 725-729
    • Sankar, D.1    Chennazhi, K.P.2    Nair, S.V.3
  • 24
    • 84901011615 scopus 로고    scopus 로고
    • Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function
    • Li W, Ding Y, Rai R, et al. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C. 2014 ; 41: 320-328
    • (2014) Mater Sci Eng C , vol.41 , pp. 320-328
    • Li, W.1    Ding, Y.2    Rai, R.3
  • 25
    • 81155152755 scopus 로고    scopus 로고
    • Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage
    • Ravichandran R, Venugopal JR, Sundarrajan S, et al. Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials. 2012 ; 33: 846-855
    • (2012) Biomaterials , vol.33 , pp. 846-855
    • Ravichandran, R.1    Venugopal, J.R.2    Sundarrajan, S.3
  • 26
    • 67349198630 scopus 로고    scopus 로고
    • The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering
    • Ngiam M, Liao S, Patil AJ, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009 ; 45: 4-16
    • (2009) Bone , vol.45 , pp. 4-16
    • Ngiam, M.1    Liao, S.2    Patil, A.J.3
  • 27
    • 84892366076 scopus 로고    scopus 로고
    • PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering
    • Binulal N, Natarajan A, Menon D, et al. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014 ; 25: 325-340
    • (2014) J Biomater Sci Polym Ed , vol.25 , pp. 325-340
    • Binulal, N.1    Natarajan, A.2    Menon, D.3
  • 28
    • 43549116318 scopus 로고    scopus 로고
    • Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
    • Venugopal JR, Low S, Choon AT, et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008 ; 32: 388-397
    • (2008) Artif Organs , vol.32 , pp. 388-397
    • Venugopal, J.R.1    Low, S.2    Choon, A.T.3
  • 29
    • 84886090966 scopus 로고    scopus 로고
    • Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering
    • Tian L, Prabhakaran MP, Ding X, et al. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. J Biomater Sci Polym Ed. 2013 ; 24: 1952-1968
    • (2013) J Biomater Sci Polym Ed , vol.24 , pp. 1952-1968
    • Tian, L.1    Prabhakaran, M.P.2    Ding, X.3
  • 30
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    • Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008 ; 29: 4314-4322
    • (2008) Biomaterials , vol.29 , pp. 4314-4322
    • Zhang, Y.1    Venugopal, J.R.2    El-Turki, A.3
  • 31
    • 0036533084 scopus 로고    scopus 로고
    • Influence of different surface modification treatments on poly (D, L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro
    • Cai K, Yao K, Cui Y, et al. Influence of different surface modification treatments on poly (D, L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials. 2002 ; 23: 1603-1611
    • (2002) Biomaterials , vol.23 , pp. 1603-1611
    • Cai, K.1    Yao, K.2    Cui, Y.3
  • 32
    • 34447120183 scopus 로고    scopus 로고
    • Effect of poly (L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes
    • Martinez EC, Ivirico JE, Criado IM, et al. Effect of poly (L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. J Mater Sci Mater Med. 2007 ; 18: 1627-1632
    • (2007) J Mater Sci Mater Med , vol.18 , pp. 1627-1632
    • Martinez, E.C.1    Ivirico, J.E.2    Criado, I.M.3
  • 33
    • 0034609621 scopus 로고    scopus 로고
    • Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics
    • Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000 ; 51: 475-483
    • (2000) J Biomed Mater Res , vol.51 , pp. 475-483
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3
  • 34
    • 0036888720 scopus 로고    scopus 로고
    • Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites
    • Wang XJ, Li YB, Wei J, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002 ; 23: 4787-4791
    • (2002) Biomaterials , vol.23 , pp. 4787-4791
    • Wang, X.J.1    Li, Y.B.2    Wei, J.3
  • 35
    • 15844412402 scopus 로고    scopus 로고
    • Increased bone formation in osteocalcin-deficient mice
    • Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996 ; 382: 448-452
    • (1996) Nature , vol.382 , pp. 448-452
    • Ducy, P.1    Desbois, C.2    Boyce, B.3
  • 36
    • 78651518046 scopus 로고    scopus 로고
    • Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus
    • Kanazawa I, Yamaguchi T, Yamauchi M, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis Int. 2011 ; 22: 187-194
    • (2011) Osteoporosis Int , vol.22 , pp. 187-194
    • Kanazawa, I.1    Yamaguchi, T.2    Yamauchi, M.3
  • 37
    • 33847419220 scopus 로고    scopus 로고
    • Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend
    • Sombatmankhong K, Sanchavanakit N, Pavasant P, et al. Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer. 2007 ; 48: 1419-1427
    • (2007) Polymer , vol.48 , pp. 1419-1427
    • Sombatmankhong, K.1    Sanchavanakit, N.2    Pavasant, P.3
  • 38
    • 14044254667 scopus 로고    scopus 로고
    • Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology
    • Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005 ; 6: 1-8
    • (2005) Biomacromolecules , vol.6 , pp. 1-8
    • Lenz, R.W.1    Marchessault, R.H.2
  • 39
    • 36248932092 scopus 로고    scopus 로고
    • Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing
    • Han I, Shim KJ, Kim JY, et al. Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs. 2007 ; 31: 801-808
    • (2007) Artif Organs , vol.31 , pp. 801-808
    • Han, I.1    Shim, K.J.2    Kim, J.Y.3
  • 40
    • 68149099016 scopus 로고    scopus 로고
    • A novel PHBV/HA microsphere releasing system loaded with alendronate
    • Huang W, Wang Y, Ren L, et al. A novel PHBV/HA microsphere releasing system loaded with alendronate. Mater Sci Eng C. 2009 ; 29: 2221-2225
    • (2009) Mater Sci Eng C , vol.29 , pp. 2221-2225
    • Huang, W.1    Wang, Y.2    Ren, L.3
  • 41
    • 84894422931 scopus 로고    scopus 로고
    • Biocomposite scaffolds based on electrospun poly (3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications
    • Ramier J, Bouderlique T, Stoilova O, et al. Biocomposite scaffolds based on electrospun poly (3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Mater Sci Eng C. 2014 ; 38: 161-169
    • (2014) Mater Sci Eng C , vol.38 , pp. 161-169
    • Ramier, J.1    Bouderlique, T.2    Stoilova, O.3
  • 42
    • 84856446577 scopus 로고    scopus 로고
    • The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells
    • Lü LX, Wang YY, Mao X, et al. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Biomed Mater. 2012 ; 7: 015002-015002
    • (2012) Biomed Mater , vol.7 , pp. 015002-015002
    • Lü, L.X.1    Wang, Y.Y.2    Mao, X.3
  • 43
    • 84872860561 scopus 로고    scopus 로고
    • Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo
    • Lü LX, Zhang XF, Wang YY, et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Inter. 2013 ; 5: 319-330
    • (2013) ACS Appl Mater Inter , vol.5 , pp. 319-330
    • Lü, L.X.1    Zhang, X.F.2    Wang, Y.Y.3
  • 44
    • 26844561981 scopus 로고    scopus 로고
    • Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates
    • Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates. Biomaterials. 2006 ; 27: 596-606
    • (2006) Biomaterials , vol.27 , pp. 596-606
    • Badami, A.S.1    Kreke, M.R.2    Thompson, M.S.3
  • 45
    • 84861879747 scopus 로고    scopus 로고
    • Composite poly-l-lactic acid/poly-(α, β)-dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration
    • Ravichandran R, Venugopal JR, Sundarrajan S, et al. Composite poly-l-lactic acid/poly-(α, β)-dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Mater Sci Eng C. 2012 ; 32: 1443-1451
    • (2012) Mater Sci Eng C , vol.32 , pp. 1443-1451
    • Ravichandran, R.1    Venugopal, J.R.2    Sundarrajan, S.3
  • 46
    • 79959845985 scopus 로고    scopus 로고
    • Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering
    • Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011 ; 7: 3113-3122
    • (2011) Acta Biomater , vol.7 , pp. 3113-3122
    • Jin, G.1    Prabhakaran, M.P.2    Ramakrishna, S.3
  • 47
    • 84902378809 scopus 로고    scopus 로고
    • Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering
    • Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl. 2013 ; 29: 46-58
    • (2013) J Biomater Appl , vol.29 , pp. 46-58
    • Shanmugavel, S.1    Reddy, V.J.2    Ramakrishna, S.3
  • 48
    • 84862295246 scopus 로고    scopus 로고
    • In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering
    • Sultana N, Khan TH. In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J Nanomater. 2012 ; 1: 190950-190950
    • (2012) J Nanomater , vol.1 , pp. 190950-190950
    • Sultana, N.1    Khan, T.H.2
  • 49
    • 84879439836 scopus 로고    scopus 로고
    • Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis
    • Chinnasamy G, Venugopal J, Ravichandran R, et al. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Macromol Biosci 2013; 13: 696-706.
    • (2013) Macromol Biosci , vol.13 , pp. 696-706
    • Chinnasamy, G.1    Venugopal, J.2    Ravichandran, R.3
  • 50
    • 33947526994 scopus 로고    scopus 로고
    • Biocomposite nanofibres and osteoblasts for bone tissue engineering
    • Venugopal J, Vadgama P, Kumar TS, et al. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology. 2007 ; 18: 055101-055101
    • (2007) Nanotechnology , vol.18 , pp. 055101-055101
    • Venugopal, J.1    Vadgama, P.2    Kumar, T.S.3
  • 51
    • 70349840761 scopus 로고    scopus 로고
    • Electrospun materials as potential platforms for bone tissue engineering
    • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliver Rev. 2009 ; 61: 1065-1083
    • (2009) Adv Drug Deliver Rev , vol.61 , pp. 1065-1083
    • Jang, J.H.1    Castano, O.2    Kim, H.W.3
  • 52
    • 0027131418 scopus 로고
    • Osteopontin: A protein with diverse functions
    • Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993 ; 7: 1475-1482
    • (1993) FASEB J , vol.7 , pp. 1475-1482
    • Denhardt, D.T.1    Guo, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.