-
1
-
-
84899932932
-
Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering
-
Rajzer I, Menaszek E, Kwiatkowski R, et al. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med. 2014 ; 25: 1239-1247
-
(2014)
J Mater Sci Mater Med
, vol.25
, pp. 1239-1247
-
-
Rajzer, I.1
Menaszek, E.2
Kwiatkowski, R.3
-
2
-
-
70349104569
-
Electrospun nanostructured scaffolds for bone tissue engineering
-
Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009 ; 5: 2884-2893
-
(2009)
Acta Biomater
, vol.5
, pp. 2884-2893
-
-
Prabhakaran, M.P.1
Venugopal, J.2
Ramakrishna, S.3
-
3
-
-
84906861855
-
An appraisal of the efficacy and effectiveness of nanoscaffolds developed by different techniques for bone tissue engineering applications: Electrospinning a paradigm shift
-
Sakina R, Ali M. An appraisal of the efficacy and effectiveness of nanoscaffolds developed by different techniques for bone tissue engineering applications: electrospinning a paradigm shift. Adv Polym Tech. 2014 ; 33: 1-8
-
(2014)
Adv Polym Tech
, vol.33
, pp. 1-8
-
-
Sakina, R.1
Ali, M.2
-
4
-
-
72049090386
-
New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications
-
Malheiro VN, Caridade SG, Alves NM, et al. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010 ; 6: 418-428
-
(2010)
Acta Biomater
, vol.6
, pp. 418-428
-
-
Malheiro, V.N.1
Caridade, S.G.2
Alves, N.M.3
-
5
-
-
79551608920
-
Fabrication of bioactive carbon nonwovens for bone tissue regeneration
-
Janicki J. Fabrication of bioactive carbon nonwovens for bone tissue regeneration. Fibres Text East Eur. 2011 ; 19: 66-72
-
(2011)
Fibres Text East Eur
, vol.19
, pp. 66-72
-
-
Janicki, J.1
-
6
-
-
84878254900
-
High throughput of quality nanofibers via one stepped pyramid-shaped spinneret
-
Jiang G, Zhang S, Qin X. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Mater Lett. 2013 ; 106: 56-58
-
(2013)
Mater Lett
, vol.106
, pp. 56-58
-
-
Jiang, G.1
Zhang, S.2
Qin, X.3
-
7
-
-
33745799503
-
Electrospinning of polymeric nanofibers for tissue engineering applications: A review
-
Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006 ; 12: 1197-1211
-
(2006)
Tissue Eng
, vol.12
, pp. 1197-1211
-
-
Pham, Q.P.1
Sharma, U.2
Mikos, A.G.3
-
8
-
-
60049100244
-
Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts
-
Gupta D, Venugopal J, Mitra S, et al. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 2009 ; 30: 2085-2094
-
(2009)
Biomaterials
, vol.30
, pp. 2085-2094
-
-
Gupta, D.1
Venugopal, J.2
Mitra, S.3
-
9
-
-
30744472423
-
Acclerated microwave processing of nanocrystalline hydroxyapatite
-
Rameshbabu N, Rao KP, Kumar TSS. Acclerated microwave processing of nanocrystalline hydroxyapatite. J Mater Sci. 2005 ; 40: 6319-6323
-
(2005)
J Mater Sci
, vol.40
, pp. 6319-6323
-
-
Rameshbabu, N.1
Rao, K.P.2
Kumar, T.S.S.3
-
10
-
-
39149124477
-
State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
-
Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007 ; 1: 245-260
-
(2007)
J Tissue Eng Regen Med
, vol.1
, pp. 245-260
-
-
Hutmacher, D.W.1
Schantz, J.T.2
Lam, C.X.3
-
11
-
-
64949119265
-
Calcium orthophosphate-based biocomposites and hybrid biomaterials
-
Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009 ; 44: 2343-2387
-
(2009)
J Mater Sci
, vol.44
, pp. 2343-2387
-
-
Dorozhkin, S.V.1
-
12
-
-
77956189952
-
Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration
-
Francis L, Venugopal J, Prabhakaran MP, et al. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomater. 2010 ; 6: 4100-4109
-
(2010)
Acta Biomater
, vol.6
, pp. 4100-4109
-
-
Francis, L.1
Venugopal, J.2
Prabhakaran, M.P.3
-
13
-
-
41149139315
-
Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers
-
Venugopal J, Low S, Choon AT, et al. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med. 2008 ; 19: 2039-2046
-
(2008)
J Mater Sci Mater Med
, vol.19
, pp. 2039-2046
-
-
Venugopal, J.1
Low, S.2
Choon, A.T.3
-
14
-
-
77956181774
-
Composite materials based on silk proteins
-
Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010 ; 35: 1093-1115
-
(2010)
Prog Polym Sci
, vol.35
, pp. 1093-1115
-
-
Hardy, J.G.1
Scheibel, T.R.2
-
15
-
-
0035925001
-
Ceramics for medical applications
-
Vallet Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001 ; 2: 97-108
-
(2001)
J Chem Soc Dalton Trans
, vol.2
, pp. 97-108
-
-
Vallet Regí, M.1
-
16
-
-
0027277009
-
Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction
-
Landis W, Song M, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993 ; 110: 39-54
-
(1993)
J Struct Biol
, vol.110
, pp. 39-54
-
-
Landis, W.1
Song, M.2
Leith, A.3
-
17
-
-
43149114420
-
Bone tissue engineering with premineralized silk scaffolds
-
Kim HJ, Kim UJ, Kim HS, et al. Bone tissue engineering with premineralized silk scaffolds. Bone. 2008 ; 42: 1226-1234
-
(2008)
Bone
, vol.42
, pp. 1226-1234
-
-
Kim, H.J.1
Kim, U.J.2
Kim, H.S.3
-
18
-
-
22544467008
-
The application of polyhydroxyalkanoates as tissue engineering materials
-
Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005 ; 26: 6565-6578
-
(2005)
Biomaterials
, vol.26
, pp. 6565-6578
-
-
Chen, G.Q.1
Wu, Q.2
-
19
-
-
73149086132
-
Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications
-
Yuan J, Xing ZC, Park SW, et al. Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res. 2009 ; 17: 850-855
-
(2009)
Macromol Res
, vol.17
, pp. 850-855
-
-
Yuan, J.1
Xing, Z.C.2
Park, S.W.3
-
20
-
-
80052768917
-
Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli
-
Kuppan P, Vasanthan KS, Sundaramurthi D, et al. Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules. 2011 ; 12: 3156-3165
-
(2011)
Biomacromolecules
, vol.12
, pp. 3156-3165
-
-
Kuppan, P.1
Vasanthan, K.S.2
Sundaramurthi, D.3
-
21
-
-
84896407136
-
Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering
-
Prabhakaran MP, Vatankhah E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng. 2013 ; 110: 2775-2784
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 2775-2784
-
-
Prabhakaran, M.P.1
Vatankhah, E.2
Ramakrishna, S.3
-
22
-
-
64249172227
-
Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells
-
Hu YJ, Wei X, Zhao W, et al. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 2009 ; 5: 1115-1125
-
(2009)
Acta Biomater
, vol.5
, pp. 1115-1125
-
-
Hu, Y.J.1
Wei, X.2
Zhao, W.3
-
23
-
-
84864147565
-
Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold
-
Sankar D, Chennazhi KP, Nair SV, et al. Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohyd Polym. 2012 ; 9: 725-729
-
(2012)
Carbohyd Polym
, vol.9
, pp. 725-729
-
-
Sankar, D.1
Chennazhi, K.P.2
Nair, S.V.3
-
24
-
-
84901011615
-
Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function
-
Li W, Ding Y, Rai R, et al. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C. 2014 ; 41: 320-328
-
(2014)
Mater Sci Eng C
, vol.41
, pp. 320-328
-
-
Li, W.1
Ding, Y.2
Rai, R.3
-
25
-
-
81155152755
-
Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage
-
Ravichandran R, Venugopal JR, Sundarrajan S, et al. Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials. 2012 ; 33: 846-855
-
(2012)
Biomaterials
, vol.33
, pp. 846-855
-
-
Ravichandran, R.1
Venugopal, J.R.2
Sundarrajan, S.3
-
26
-
-
67349198630
-
The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering
-
Ngiam M, Liao S, Patil AJ, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009 ; 45: 4-16
-
(2009)
Bone
, vol.45
, pp. 4-16
-
-
Ngiam, M.1
Liao, S.2
Patil, A.J.3
-
27
-
-
84892366076
-
PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering
-
Binulal N, Natarajan A, Menon D, et al. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014 ; 25: 325-340
-
(2014)
J Biomater Sci Polym Ed
, vol.25
, pp. 325-340
-
-
Binulal, N.1
Natarajan, A.2
Menon, D.3
-
28
-
-
43549116318
-
Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
-
Venugopal JR, Low S, Choon AT, et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008 ; 32: 388-397
-
(2008)
Artif Organs
, vol.32
, pp. 388-397
-
-
Venugopal, J.R.1
Low, S.2
Choon, A.T.3
-
29
-
-
84886090966
-
Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering
-
Tian L, Prabhakaran MP, Ding X, et al. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. J Biomater Sci Polym Ed. 2013 ; 24: 1952-1968
-
(2013)
J Biomater Sci Polym Ed
, vol.24
, pp. 1952-1968
-
-
Tian, L.1
Prabhakaran, M.P.2
Ding, X.3
-
30
-
-
50349091938
-
Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
-
Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008 ; 29: 4314-4322
-
(2008)
Biomaterials
, vol.29
, pp. 4314-4322
-
-
Zhang, Y.1
Venugopal, J.R.2
El-Turki, A.3
-
31
-
-
0036533084
-
Influence of different surface modification treatments on poly (D, L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro
-
Cai K, Yao K, Cui Y, et al. Influence of different surface modification treatments on poly (D, L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials. 2002 ; 23: 1603-1611
-
(2002)
Biomaterials
, vol.23
, pp. 1603-1611
-
-
Cai, K.1
Yao, K.2
Cui, Y.3
-
32
-
-
34447120183
-
Effect of poly (L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes
-
Martinez EC, Ivirico JE, Criado IM, et al. Effect of poly (L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. J Mater Sci Mater Med. 2007 ; 18: 1627-1632
-
(2007)
J Mater Sci Mater Med
, vol.18
, pp. 1627-1632
-
-
Martinez, E.C.1
Ivirico, J.E.2
Criado, I.M.3
-
33
-
-
0034609621
-
Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics
-
Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000 ; 51: 475-483
-
(2000)
J Biomed Mater Res
, vol.51
, pp. 475-483
-
-
Webster, T.J.1
Ergun, C.2
Doremus, R.H.3
-
34
-
-
0036888720
-
Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites
-
Wang XJ, Li YB, Wei J, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002 ; 23: 4787-4791
-
(2002)
Biomaterials
, vol.23
, pp. 4787-4791
-
-
Wang, X.J.1
Li, Y.B.2
Wei, J.3
-
35
-
-
15844412402
-
Increased bone formation in osteocalcin-deficient mice
-
Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996 ; 382: 448-452
-
(1996)
Nature
, vol.382
, pp. 448-452
-
-
Ducy, P.1
Desbois, C.2
Boyce, B.3
-
36
-
-
78651518046
-
Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus
-
Kanazawa I, Yamaguchi T, Yamauchi M, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis Int. 2011 ; 22: 187-194
-
(2011)
Osteoporosis Int
, vol.22
, pp. 187-194
-
-
Kanazawa, I.1
Yamaguchi, T.2
Yamauchi, M.3
-
37
-
-
33847419220
-
Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend
-
Sombatmankhong K, Sanchavanakit N, Pavasant P, et al. Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer. 2007 ; 48: 1419-1427
-
(2007)
Polymer
, vol.48
, pp. 1419-1427
-
-
Sombatmankhong, K.1
Sanchavanakit, N.2
Pavasant, P.3
-
38
-
-
14044254667
-
Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology
-
Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005 ; 6: 1-8
-
(2005)
Biomacromolecules
, vol.6
, pp. 1-8
-
-
Lenz, R.W.1
Marchessault, R.H.2
-
39
-
-
36248932092
-
Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing
-
Han I, Shim KJ, Kim JY, et al. Effect of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif Organs. 2007 ; 31: 801-808
-
(2007)
Artif Organs
, vol.31
, pp. 801-808
-
-
Han, I.1
Shim, K.J.2
Kim, J.Y.3
-
40
-
-
68149099016
-
A novel PHBV/HA microsphere releasing system loaded with alendronate
-
Huang W, Wang Y, Ren L, et al. A novel PHBV/HA microsphere releasing system loaded with alendronate. Mater Sci Eng C. 2009 ; 29: 2221-2225
-
(2009)
Mater Sci Eng C
, vol.29
, pp. 2221-2225
-
-
Huang, W.1
Wang, Y.2
Ren, L.3
-
41
-
-
84894422931
-
Biocomposite scaffolds based on electrospun poly (3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications
-
Ramier J, Bouderlique T, Stoilova O, et al. Biocomposite scaffolds based on electrospun poly (3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Mater Sci Eng C. 2014 ; 38: 161-169
-
(2014)
Mater Sci Eng C
, vol.38
, pp. 161-169
-
-
Ramier, J.1
Bouderlique, T.2
Stoilova, O.3
-
42
-
-
84856446577
-
The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells
-
Lü LX, Wang YY, Mao X, et al. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Biomed Mater. 2012 ; 7: 015002-015002
-
(2012)
Biomed Mater
, vol.7
, pp. 015002-015002
-
-
Lü, L.X.1
Wang, Y.Y.2
Mao, X.3
-
43
-
-
84872860561
-
Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo
-
Lü LX, Zhang XF, Wang YY, et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Inter. 2013 ; 5: 319-330
-
(2013)
ACS Appl Mater Inter
, vol.5
, pp. 319-330
-
-
Lü, L.X.1
Zhang, X.F.2
Wang, Y.Y.3
-
44
-
-
26844561981
-
Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates
-
Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates. Biomaterials. 2006 ; 27: 596-606
-
(2006)
Biomaterials
, vol.27
, pp. 596-606
-
-
Badami, A.S.1
Kreke, M.R.2
Thompson, M.S.3
-
45
-
-
84861879747
-
Composite poly-l-lactic acid/poly-(α, β)-dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration
-
Ravichandran R, Venugopal JR, Sundarrajan S, et al. Composite poly-l-lactic acid/poly-(α, β)-dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Mater Sci Eng C. 2012 ; 32: 1443-1451
-
(2012)
Mater Sci Eng C
, vol.32
, pp. 1443-1451
-
-
Ravichandran, R.1
Venugopal, J.R.2
Sundarrajan, S.3
-
46
-
-
79959845985
-
Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering
-
Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011 ; 7: 3113-3122
-
(2011)
Acta Biomater
, vol.7
, pp. 3113-3122
-
-
Jin, G.1
Prabhakaran, M.P.2
Ramakrishna, S.3
-
47
-
-
84902378809
-
Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering
-
Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl. 2013 ; 29: 46-58
-
(2013)
J Biomater Appl
, vol.29
, pp. 46-58
-
-
Shanmugavel, S.1
Reddy, V.J.2
Ramakrishna, S.3
-
48
-
-
84862295246
-
In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering
-
Sultana N, Khan TH. In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J Nanomater. 2012 ; 1: 190950-190950
-
(2012)
J Nanomater
, vol.1
, pp. 190950-190950
-
-
Sultana, N.1
Khan, T.H.2
-
49
-
-
84879439836
-
Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis
-
Chinnasamy G, Venugopal J, Ravichandran R, et al. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Macromol Biosci 2013; 13: 696-706.
-
(2013)
Macromol Biosci
, vol.13
, pp. 696-706
-
-
Chinnasamy, G.1
Venugopal, J.2
Ravichandran, R.3
-
50
-
-
33947526994
-
Biocomposite nanofibres and osteoblasts for bone tissue engineering
-
Venugopal J, Vadgama P, Kumar TS, et al. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology. 2007 ; 18: 055101-055101
-
(2007)
Nanotechnology
, vol.18
, pp. 055101-055101
-
-
Venugopal, J.1
Vadgama, P.2
Kumar, T.S.3
-
51
-
-
70349840761
-
Electrospun materials as potential platforms for bone tissue engineering
-
Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliver Rev. 2009 ; 61: 1065-1083
-
(2009)
Adv Drug Deliver Rev
, vol.61
, pp. 1065-1083
-
-
Jang, J.H.1
Castano, O.2
Kim, H.W.3
-
52
-
-
0027131418
-
Osteopontin: A protein with diverse functions
-
Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993 ; 7: 1475-1482
-
(1993)
FASEB J
, vol.7
, pp. 1475-1482
-
-
Denhardt, D.T.1
Guo, X.2
|